植物生态学报 ›› 2012, Vol. 36 ›› Issue (8): 819-830.DOI: 10.3724/SP.J.1258.2012.00819
收稿日期:
2011-12-12
接受日期:
2012-05-16
出版日期:
2012-12-12
发布日期:
2012-08-21
通讯作者:
桑卫国
作者简介:
* (E-mail: swg@ibcas.ac.cn)
DONG Li-Jia1,2, SANG Wei-Guo1,*()
Received:
2011-12-12
Accepted:
2012-05-16
Online:
2012-12-12
Published:
2012-08-21
Contact:
SANG Wei-Guo
摘要:
气候变化将增加地表平均气温、改变降水格局, 会影响到种子出苗和幼苗生长, 进而影响物种的更新动态。为探讨增温和降水变化对东灵山地区建群树种辽东栎(Quercus mongolica)种子出苗和一年生幼苗生长和适应状况的影响, 该文利用环境控制生长箱开展了温度和降水量的双因素控制实验, 温度设置3个梯度: 月平均气温(对照)、增温2 ℃和增温6 ℃; 降水量设置3个梯度: 月平均降水量(对照)、减水30%和加水30%。结果表明: 1)辽东栎的种子出苗率和一年生幼苗的生长对增温和降水变化的响应不一致, 种子出苗率主要受到降水及其与温度交互作用的影响, 幼苗生长仅受到温度和降水独立作用的影响; 2)春季增温2 ℃或降水量增加均使辽东栎种子出苗期提前; 增温6 ℃与降水量减少的水热组合延迟了种子出苗期并使其存活率和出苗率显著降低, 但在此温度下增加降水量则增加了出苗速率和出苗率。3)增温2 ℃对其生长无显著影响, 增温6 ℃则在不同水分条件下显著地增加了幼苗的比叶面积、抑制了叶的伸长生长, 同时也显著降低了各器官生物量积累, 并减少了幼苗生物量向根的分配; 降水量减少降低了幼苗根生物量, 但未影响总生物量和根冠比, 降水量增加显著促进了幼苗地上部分的生长, 特别是叶的生长。因此, 适当地增温或增加降水量将增加辽东栎幼苗的更新潜力, 但增温和降水量减少导致的干旱化将显著降低幼苗的更新潜力。
董丽佳, 桑卫国. 模拟增温和降水变化对北京东灵山辽东栎种子出苗和幼苗生长的影响. 植物生态学报, 2012, 36(8): 819-830. DOI: 10.3724/SP.J.1258.2012.00819
DONG Li-Jia, SANG Wei-Guo. Effects of simulated warming and precipitation change on seedling emergence and growth of Quercus mongolica in Dongling Mountain, Beijing, China. Chinese Journal of Plant Ecology, 2012, 36(8): 819-830. DOI: 10.3724/SP.J.1258.2012.00819
时间 Time | 平均月昼/夜气温 Mean monthly air temperature of day/night (°C) | 平均月降水量 Mean monthly precipitation (mm) | 降水频次 Frequency of precipitation | |||||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | W | W- | W+ | |||
5月 May | 20.5/9.5 | 22.5/11.5 | 26.5/15.5 | 54.7 | 38.3 | 71.1 | 6 | |
6月 June | 22.8/13.0 | 24.8/15.0 | 28.8/19.0 | 95.9 | 67.1 | 124.7 | 6 | |
7月 July | 24.0/15.9 | 26.0/17.9 | 30.0/21.9 | 150.9 | 105.6 | 196.2 | 6 | |
8月 August | 21.9/14.7 | 23.9/16.7 | 27.9/20.7 | 111.0 | 77.7 | 144.3 | 6 |
表1 生长箱的温度设置和实验中的降水设置
Table 1 Temperature setting of growth chamber and precipitation setting in experiment
时间 Time | 平均月昼/夜气温 Mean monthly air temperature of day/night (°C) | 平均月降水量 Mean monthly precipitation (mm) | 降水频次 Frequency of precipitation | |||||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | W | W- | W+ | |||
5月 May | 20.5/9.5 | 22.5/11.5 | 26.5/15.5 | 54.7 | 38.3 | 71.1 | 6 | |
6月 June | 22.8/13.0 | 24.8/15.0 | 28.8/19.0 | 95.9 | 67.1 | 124.7 | 6 | |
7月 July | 24.0/15.9 | 26.0/17.9 | 30.0/21.9 | 150.9 | 105.6 | 196.2 | 6 | |
8月 August | 21.9/14.7 | 23.9/16.7 | 27.9/20.7 | 111.0 | 77.7 | 144.3 | 6 |
图2 增温和降水变化条件下播种两周后的出苗动态(平均值±标准误差)。T0, T1, T2, W, W-和W+同表1。
Fig. 2 Dynamic of seedling emergence after two weeks of sowing in a combination of warming and altered precipitation (mean ± SE). T0, T1, T2, W, W- and W+ see Table 1.
图3 辽东栎种子的出苗率、死亡率和未出土幼苗百分率(平均值±标准误差)。不同小写字母表示在相同的水分处理下, 增温与对照间差异显著(p < 0.05); 不同大写字母表示相同温度下, 降水变化与对照间的差异显著(p < 0.05)。T0、T1、T2、W、W-和W+同表1。
Fig. 3 Seedling emergence percentage, non-emergence percentage and seed mortality of Quercus mongolica (mean ± SE). Different lowercase letters indicate significant difference between elevated air temperature and mean air temperature within same water treatment (p < 0.05); Different uppercase letters indicate significant difference between precipitation change and average precipitation at same temperature level (p < 0.05). T0, T1, T2, W, W- and W+ see Table 1.
自变量 Independent variable | 变异来源(自由度) Variance source (df) | 响应变量的F值 (概率水平) F value and probability levels of response variable | |||||
---|---|---|---|---|---|---|---|
H | RL | LN | LL | SLA | LB | ||
T | 2 | 1.32 | 0.89 | 0.44 | 2.82 | 6.21** | 3.82* |
W | 2 | 0.27 | 1.53 | 2.97 | 7.93** | 7.23** | 5.17* |
T × W | 4 | 0.33 | 0.26 | 0.59 | 1.47 | 1.86 | 0.58 |
STB | RB | SB | TB | RSR | |||
T | 2 | 5.71** | 9.46** | 5.29* | 8.17** | 12.21** | |
W | 2 | 2.07 | 3.50* | 5.16* | 4.51* | 3.07 | |
T × W | 4 | 1.22 | 0.33 | 0.73 | 057 | 0.89 |
表2 双因素方差分析中的F值及概率水平
Table 2 F value and probability levels for independent variables in two-way ANOVA
自变量 Independent variable | 变异来源(自由度) Variance source (df) | 响应变量的F值 (概率水平) F value and probability levels of response variable | |||||
---|---|---|---|---|---|---|---|
H | RL | LN | LL | SLA | LB | ||
T | 2 | 1.32 | 0.89 | 0.44 | 2.82 | 6.21** | 3.82* |
W | 2 | 0.27 | 1.53 | 2.97 | 7.93** | 7.23** | 5.17* |
T × W | 4 | 0.33 | 0.26 | 0.59 | 1.47 | 1.86 | 0.58 |
STB | RB | SB | TB | RSR | |||
T | 2 | 5.71** | 9.46** | 5.29* | 8.17** | 12.21** | |
W | 2 | 2.07 | 3.50* | 5.16* | 4.51* | 3.07 | |
T × W | 4 | 1.22 | 0.33 | 0.73 | 057 | 0.89 |
图4 增温和降水处理对辽东栎幼苗形态特征的影响(平均值±标准误差)。不同小写字母表示在相同的水分处理下, 增温与对照间差异显著(p < 0.05); 不同大写字母表示相同温度下, 降水变化与对照间的差异显著(p < 0.05)。T0、T1、T2、W、W-和W+同表1。
Fig. 4 Effects of elevated temperature and precipitation treatment on seedling morphological characteristics of Quercus mongolica (mean ± SE). LL, longest leaf length; LN, leaf number; SLA, specific leaf area. Different lowercase letters indicate significant difference between elevated temperature and mean temperature within same water treatment (p < 0.05); Different uppercase letters indicate significant difference between precipitation change and average precipitation at same temperature level (p < 0.05). T0, T1, T2, W, W- and W+ see Table 1.
图5 增温和降水处理对辽东栎幼苗生物量的影响(平均值±标准误差)。不同小写字母表示在相同的水分处理下, 增温与对照间差异显著(p < 0.05); 不同大写字母表示相同温度下, 降水变化与对照间的差异显著(p < 0.05)。T0、T1、T2、W、W-和W+同表1。
Fig. 5 Effects of elevated temperature and precipitation treatment on seedling biomass of Quercus mongolica (mean ± SE). LB, leaf biomass; RB, root biomass; R/S, root:shoot; SB, shoot biomass; STB, stem biomass; TB, total biomass. Different lowercase letters indicate significant difference between elevated temperature and mean temperature within same water treatment (p < 0.05); Different uppercase letters indicate significant difference between precipitation change and average precipitation at same temperature level (p < 0.05). T0, T1, T2, W, W- and W+ see Table 1.
[1] |
Adams HD, Kolb TE (2005). Tree growth response to drought and temperature in a mountain landscape in northern Arizona, USA. Journal of Biogeography, 32, 1629-1640.
DOI URL |
[2] |
Chidumayo EN (2008). Implications of climate warming on seedling emergence and mortality of African savanna woody plants. Plant Ecology, 198, 61-71.
DOI URL |
[3] |
Coomes DA, Grubb PJ (2003). Colonization, tolerance, competition and seed-size variation within functional groups. Trends in Ecology and Evolution, 18, 283-291.
DOI URL |
[4] |
Dalgleish HJ, Koons DN, Adler PB (2010). Can life-history traits predict the response of forb populations to changes in climate variability? Journal of Ecology, 98, 209-217.
DOI URL |
[5] | Ding YH, Ren GY, Zhao ZC, Xu Y, Luo Y, Li QP, Zhang J (2007). Detection, causes and projection of climate change over China: an overview of recent progress. Advances in Atmospheric Sciences, 24, 954-971. |
[6] | Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074. |
[7] | Fay PA, Schultz MJ (2009). Germination, survival, and growth of grass and forb seedlings: effects of soil moisture variability. Acta Oecologica, 35, 679-684. |
[8] | Fernández RJ, Wang MB, Reynolds JF (2002). Do morphological changes mediate plant responses to water stress? A steady-state experiment with two C4 grasses. New Phytologist, 155, 79-88. |
[9] | Gao XM (高贤明), Du XJ (杜晓军), Wang ZL (王中磊) (2003). Comparison of seedling recruitment and establishment of Quercus wutaishanica in two habitats in Dongling Mountainous area, Beijing. Acta Phytoecologica Sinica (植物生态学报), 27, 404-411. (in Chinese with English abstract) |
[10] | Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I, Matías L, Quero JL, Castro J, Zamora R, Marañón T (2008). Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos, 117, 1683-1699. |
[11] | Guo H (郭华), Wang XA (王孝安), Zhu ZH (朱志红) (2010). Recruitment limitations of Quercus wutaishanica seedlings in three habitats in Mt. Ziwuling. Acta Ecologica Sinica (生态学报), 30, 6521-6529. (in Chinese with English abstract) |
[12] | He WM, Zhang XS (2003). Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semi-arid Mu Us Sandland in China. Journal of Arid Environments, 53, 307-316. |
[13] | Hovenden MJ, Newton PCD, Wills KE, Janes JK, Williams AL, Vander Schoor JK, Nolan MJ (2008). Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland. New Phytologist, 180, 143-152. |
[14] | Ibáñez I, Clark JS, LaDeau S, Hille Ris Lambers J (2007). Exploiting temporal variability to understand tree recruitment response to climate change. Ecological Monographs, 77, 163-177. |
[15] | IPCC ( Intergovernmental Panel on Climate Change) (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin DH, Manning M, Marquis M, Chen ZL, Averyt K, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[16] | Júnior AW, da Costa e Silva JO, Pimentel LD, dos Santos CEM, Bruckner CH (2011). Germination and initial growth of two Jabuticaba species in function of seed size. Acta Scientiarum-Agronomy, 33, 105-109. |
[17] | Kelly DL (2002). The regeneration of Quercus petraea (sessile oak) in southwest Ireland: a 25-year experimental study. Forest Ecology and Management, 166, 207-226. |
[18] | Leverenz JW, Bruhn D, Saxe H (1999). Responses of two provenances of Fagus sylvatica seedlings to a combination of four temperature and two CO2 treatments during their first growing season: gas exchange of leaves and roots. New Phytologist, 144, 437-454. |
[19] | Li L (李亮), Su HX (苏宏新), Sang WG (桑卫国) (2011). Simulating impacts of summer drought on forest dynamics in Dongling Mountain. Chinese Journal of Plant Ecology (植物生态学报), 35, 147-158. (in Chinese with English abstract) |
[20] | Li QK, Ma KP (2003). Factors affecting establishment of Quercus liaotungensis Koidz. under mature mixed oak forest overstory and in shrubland. Forest Ecology and Management, 176, 133-146. |
[21] | Li XS (李小双), Peng MC (彭明春), Dang CL (党承林) (2007). Research progress on natural regeneration of plants. Chinese Journal of Ecology (生态学杂志), 26, 2081-2088. (in Chinese with English abstract) |
[22] | Lloret F, Peñuelas J, Estiarte M (2004). Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Global Change Biology, 10, 248-258. |
[23] | Ma LX (马立祥), Zhao M (赵甍), Mao ZJ (毛子军), Liu LX (刘林馨), Zhao XZ (赵溪竹) (2010). Effects of elevated temperature and [CO2] under different nitrogen regimes on biomass and its allocation in Quercus mongolica seedlings. Chinese Journal of Plant Ecology (植物生态学报), 34, 279-288. (in Chinese with English abstract) |
[24] | Marison JIL, Lawlor DW (1999). Interactions between increasing CO2 and concentration and temperature on plant growth. Plant, Cell & Environment, 22, 659-682. |
[25] | Martinkova Z, Honek A (2011). Asymmetrical intraspecific competition in Echinochloa crus-galli is related to differences in the timing of seedling emergence and seedling vigour. Plant Ecology, 212, 1831-1839. |
[26] | Milbau A, Graae BJ, Shevtsova A, Nijs I (2009). Effects of a warmer climate on seed germination in the subarctic. Annals of Botany, 104, 287-296. |
[27] | Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005). Ecological consequences of phenotypic plasticity. Trends in Ecology and Evolution, 20, 685-692. |
[28] | Patil RH, Laegdsmand M, Olesen JE, Porter JR (2010). Growth and yield response of winter wheat to soil warming and rainfall patterns. Journal of Agricultural Science, 148, 553-566. |
[29] | Rees M, Condit R, Crawley M, Pacala S, Tilman D (2001). Long-term studies of vegetation dynamics. Science, 293, 650-655. |
[30] | Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332-336. |
[31] | Seneviratne SI, Lüthi D, Litschi M, Schär C (2006). Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209. |
[32] | Shang ZB (尚宗波), Gao Q (高琼) (2001). Assessing the sensitivity of China water condition to global climate changes. Acta Ecologica Sinica (生态学报), 21, 528-537. (in Chinese with English abstract) |
[33] | Shevtsova A, Graae BJ, Jochum T, Milbau A, Kockelbergh F, Beyens L, Nijs I (2009). Critical periods for impact of climate warming on early seedling establishment in subarctic tundra. Global Change Biology, 15, 2662-2680. |
[34] | Thompson LJ, Naeem S (1996). The effects of soil warming on plant recruitment. Plant and Soil, 182, 339-343. |
[35] | Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, Granier C, Simonneau T (2011). Arabidopsis growth under prolonged high temperature and water deficit: Independent or interactive effects? Plant, Cell & Environment, 35, 702-718. |
[36] | Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010). Quantifying phenological plasticity to temperature in two temperate tree species. Functional Ecology, 24, 1211-1218. |
[37] | Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011). Climate change and plant regeneration from seed. Global Change Biology, 17, 2145-2161. |
[38] | Wang M (王淼), Dai LM (代力民), Ji LZ (姬兰柱) (2001). A preliminary study on ecological response of dominant tree species in Korean pine broadleaf forest at Changbai Mountain to soil water stress and their biomass allocation. Chinese Journal of Applied Ecology (应用生态学报), 12, 496-500. (in Chinese with English abstract) |
[39] | Wang W (王巍), Li QK (李庆康), Ma KP (马克平) (2000). Establishment and spatial distribution of Quercus liaotungensis Koidz. seedlings in Dongling Mountain. Acta Phytoecologica Sinica (植物生态学报), 24, 595-600. (in Chinese with English abstract) |
[40] | Wei Y, Bai Y, Henderson DC (2009). Critical conditions for successful regeneration of an endangered annual plant, Cryptantha minima: a modeling approach. Journal of Arid Environments, 73, 872-875. |
[41] | Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941-952. |
[42] | Weltzin JF, McPherson GR (2000). Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology, 81, 1902-1913. |
[43] | Wu Q (吴茜), Ding J (丁佳), Yan H (闫慧), Zhang SR (张守仁), Fang T (方腾), Ma KP (马克平) (2011). Effects of simulated precipitation and nitrogen addition on seedling growth and biomass in five tree species in Gutian Mountain, Zhejiang Province, China. Chinese Journal of Plant Ecology (植物生态学报), 35, 256-267. (in Chinese with English abstract) |
[44] | Xu ZZ, Zhou GS (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224, 1080-1090. |
[45] | Yan XF (闫兴富), Du Q (杜茜), Shi C (石淳), Zhou LB (周立彪), Zhang KW (张靠稳) (2011). Seedling regeneration of Quercus liaotungensis in Liupan Mountains, China. Chinese Journal of Plant Ecology (植物生态学报), 35, 914-925. (in Chinese with English abstract) |
[46] | Zhang JH, Maun MA (1993). Seed mass and seedling size relationship in Calamovilfa longifolia. Canadian Journal of Botany, 71, 551-557. |
[47] | Zhou HK (周华坤), Zhou XM (周兴民), Zhao XQ (赵新全) (2000). A preliminary study of the influence of simulated greenhouse effect on a Kobresia humilis meadow. Acta Phytoecologica Sinica (植物生态学报), 24, 547-553. (in Chinese with English abstract) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[4] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[5] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[6] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[7] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[8] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[9] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[10] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[11] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[12] | 王燕玲, 招礼军, 朱栗琼, 莫若果, 林婷, 赵小雨. 广西天然红鳞蒲桃种群幼苗数量特征及动态分析[J]. 植物生态学报, 2023, 47(9): 1278-1286. |
[13] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[14] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[15] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19