植物生态学报 ›› 2013, Vol. 37 ›› Issue (8): 750-757.DOI: 10.3724/SP.J.1258.2013.00078
所属专题: 生物多样性
收稿日期:
2013-02-05
接受日期:
2013-05-15
出版日期:
2013-02-05
发布日期:
2013-08-07
通讯作者:
王爱丽
Received:
2013-02-05
Accepted:
2013-05-15
Online:
2013-02-05
Published:
2013-08-07
Contact:
WANG Ai-Li
摘要:
以天津大学校内两个相邻的小型湖泊(青年湖和爱晚湖)为研究区域, 通过采样分析, 利用磷脂脂肪酸(PLFA)和聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)分析技术, 研究了湿地植物种类(芦苇(Phragmites australis)和东方香蒲(Typha orientalis))和生长方式(单生和混生)对根际微生物生物量和群落结构的影响。PLFA分析结果表明, 植物根际微生物生物量大于非根际(爱晚湖芦苇除外); 植物种间的差异较大, 东方香蒲根际沉积物中微生物生物量大于芦苇根际; 种内根际微生物受植物的生长状况影响较大, 采样期间两个湖泊中东方香蒲的生长状况(株高)相似, 根际微生物生物量相差不大, 而爱晚湖芦苇由于与东方香蒲共生, 受到东方香蒲的抑制, 使得根际微生物生物量明显低于单独生长的芦苇; 革兰氏阳性细菌数量小于革兰氏阴性细菌的数量, 且根际的革兰氏阳性细菌与革兰氏阴性细菌的比值小于非根际。沉积物中的细菌群落结构主要与植物种类有关, 同一种植物的根际细菌群落结构差异较小(这些根际细菌聚为一类); 不同植物的根际细菌群落结构差异较大。
王爱丽. 应用磷脂脂肪酸和聚合酶链式反应-变性梯度凝胶电泳分析技术研究湿地植物根际微生物群落多样性. 植物生态学报, 2013, 37(8): 750-757. DOI: 10.3724/SP.J.1258.2013.00078
WANG Ai-Li. Microbial community diversity in the rhizosphere of wetland plants examined by phospholipid fatty acid and polymerase chain reaction denaturing gradient gel electrophoresis. Chinese Journal of Plant Ecology, 2013, 37(8): 750-757. DOI: 10.3724/SP.J.1258.2013.00078
图1 沉积物样品中磷脂脂肪酸组成。A, 爱晚湖; N, 非根际; PR, 芦苇根际; Q, 青年湖; TR, 东方香蒲根际。
Fig. 1 Composition of phospholipid fatty acid in sediment samples. A, Aiwan Lake; N, non-rhizosphere; PR, Phragmites australis rhizosphere; Q, Qingnian Lake; TR, Typha orientalis rhizosphere.
青年湖 Qingnian Lake | 爱晚湖 Aiwan Lake | ||||||
---|---|---|---|---|---|---|---|
东方香蒲根际 Typha orientalis rhizosphere | 芦苇根际 Phragmites australis rhizosphere | 非根际 Non- rhizosphere | 东方香蒲根际 Typha orientalis rhizosphere | 芦苇根际 Phragmites australis rhizosphere | 非根际 Non- rhizosphere | ||
微生物生物量 Microbial biomass | 44.17B (2.19) | 12.35C (1.48) | 5.99D (0.79) | 51.17A (3.19) | 3.52E (0.25) | 3.93E (0.27) | |
革兰氏阳性细菌 Gram-positive bacteria | 8.65A (0.85) | 2.17B (0.12) | 2.10C (0.08) | 26.40A (2.30) | 1.86C (0.06) | 1.78C (0.05) | |
革兰氏阴性细菌 Gram-negative bacteria | 14.21B (0.13) | 3.81C (0.05) | - | 2.35A (0.22) | - | - | |
阳性菌与阴性菌的比值 Ratio of gram-positive bacteria to gram-negative bacteria | 0.61B (0.05) | 0.57B (0.03) | 0.83C (0.02) | 8.11A (0.75) | 0.46E (0.01) | 0.70D (0.01) | |
细菌生物量 Bacterial biomass | 24.91A (2.15) | 6.20B (0.52) | 1.12E (0.03) | 17.39A (1.45) | 1.30D (0.04) | 0.93F (0.02) | |
真菌生物量 Fungal biomass | 2.99A (0.25) | 0.77B (0.05) | 0.74A (0.0.2) | 0.47C (0.01) | 0.35D (0.01) | 0.75A (0.03) |
表1 沉积物中磷脂脂肪酸含量(nmol·g-1干重)
Table 1 Contents of phospholipid fatty acids in sediments (nmol·g-1 dry weight)
青年湖 Qingnian Lake | 爱晚湖 Aiwan Lake | ||||||
---|---|---|---|---|---|---|---|
东方香蒲根际 Typha orientalis rhizosphere | 芦苇根际 Phragmites australis rhizosphere | 非根际 Non- rhizosphere | 东方香蒲根际 Typha orientalis rhizosphere | 芦苇根际 Phragmites australis rhizosphere | 非根际 Non- rhizosphere | ||
微生物生物量 Microbial biomass | 44.17B (2.19) | 12.35C (1.48) | 5.99D (0.79) | 51.17A (3.19) | 3.52E (0.25) | 3.93E (0.27) | |
革兰氏阳性细菌 Gram-positive bacteria | 8.65A (0.85) | 2.17B (0.12) | 2.10C (0.08) | 26.40A (2.30) | 1.86C (0.06) | 1.78C (0.05) | |
革兰氏阴性细菌 Gram-negative bacteria | 14.21B (0.13) | 3.81C (0.05) | - | 2.35A (0.22) | - | - | |
阳性菌与阴性菌的比值 Ratio of gram-positive bacteria to gram-negative bacteria | 0.61B (0.05) | 0.57B (0.03) | 0.83C (0.02) | 8.11A (0.75) | 0.46E (0.01) | 0.70D (0.01) | |
细菌生物量 Bacterial biomass | 24.91A (2.15) | 6.20B (0.52) | 1.12E (0.03) | 17.39A (1.45) | 1.30D (0.04) | 0.93F (0.02) | |
真菌生物量 Fungal biomass | 2.99A (0.25) | 0.77B (0.05) | 0.74A (0.0.2) | 0.47C (0.01) | 0.35D (0.01) | 0.75A (0.03) |
图2 不同沉积物样品的变性梯度凝胶电泳分离图。从左到右分别为青年湖东方香蒲根际、青年湖芦苇根际、青年湖非根际、爱晚湖东方香蒲根际、爱晚湖非根际、爱晚湖芦苇根际。图中的数字是条带的编号。
Fig. 2 Denaturing gradient gel electrophoresis separation of different sediment samples. From left to right are Typha orientalis rhizosphere in Qingnian Lake, Phragmites australis rhizosphere in Qingnian Lake, non-rhizosphere in Qingnian Lake, Typha orientalis rhizosphere in Aiwan Lake, non-rhizosphere in Aiwan Lake, Phragmites australis rhizosphere in Aiwan Lake, respectively. The numbers in figure refer to the number of bands.
青年湖 Qingnian Lake | 爱晚湖 Aiwan Lake | ||||||
---|---|---|---|---|---|---|---|
东方香蒲根际 Typha orientalis rhizosphere | 芦苇根际 Phragmites australis rhizosphere | 非根际 Non- rhizosphere | 东方香蒲根际 Typha orientalis rhizosphere | 芦苇根际 Phragmites australis rhizosphere | 非根际 Non- rhizosphere | ||
磷脂脂肪酸 Phospholipid fatty acids | 2.39A (0.20) | 2.20A (0.18) | 1.72B (0.15) | 2.25A (0.18) | 1.79B (0.12) | 1.35C (0.09) | |
变性梯度凝胶电泳 Denaturing gradient gel electrophoresis | 2.46A (0.21) | 2.32A (0.19) | 1.68B (0.15) | 2.87A (0.22) | 2.61A (0.20) | 1.66B (0.13) |
表2 不同沉积物中微生物群落的多样性指数
Table 2 Diversity index of microbial community in different sediments
青年湖 Qingnian Lake | 爱晚湖 Aiwan Lake | ||||||
---|---|---|---|---|---|---|---|
东方香蒲根际 Typha orientalis rhizosphere | 芦苇根际 Phragmites australis rhizosphere | 非根际 Non- rhizosphere | 东方香蒲根际 Typha orientalis rhizosphere | 芦苇根际 Phragmites australis rhizosphere | 非根际 Non- rhizosphere | ||
磷脂脂肪酸 Phospholipid fatty acids | 2.39A (0.20) | 2.20A (0.18) | 1.72B (0.15) | 2.25A (0.18) | 1.79B (0.12) | 1.35C (0.09) | |
变性梯度凝胶电泳 Denaturing gradient gel electrophoresis | 2.46A (0.21) | 2.32A (0.19) | 1.68B (0.15) | 2.87A (0.22) | 2.61A (0.20) | 1.66B (0.13) |
图3 沉积物样品中微生物群落磷脂脂肪酸数据聚类分析。图中的数字指聚类分析中的组间平均距离, 单位为cm。
Fig. 3 Cluster analysis of phospholipid fatty acid data of microbial community from sediment samples. The numbers in figure refer to average distance between the groups in cluster analysis and the unit of the number is centimeter.
图4 沉积物样品中微生物群落变性梯度凝胶电泳条带聚类分析。图中的数字指聚类分析中的组间变性梯度凝胶电泳条带的相似程度, 例如0.81代表相似度为81%。
Fig. 4 Cluster analysis of denaturing gradient gel electrophoresis bands of microbial community from sediment samples. The numbers in figure refer to the similarity among denaturing gradient gel electrophoresis bands between the groups in cluster analysis. For example, 0.81 refers to 81% of similarity.
[1] |
Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002). Plant-dependent genotypic and phenotypic diver- sity of antagonistic rhizobacteria isolated from different Verticillium host plants. Applied and Environmental Microbiology, 68, 3328-3338.
URL PMID |
[2] | Chi J, Yang R, Wang AL (2012). Effect of wetland plant species and growth strategy on the distribution of PAEs and their monoester metabolites in the rhizosphere. Journal of Lake Science, 24, 416-421. (in Chinese with English abstract) |
[ 迟杰, 杨瑞, 王爱丽 (2012). 湿地植物种类和生长方式对根际酞酸酯及其单酯代谢物分布特征的影响. 湖泊科学, 24, 416-421.] | |
[3] |
Dong XL, Reddy GB (2010). Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresource Technology, 101, 1175-1182.
DOI URL PMID |
[4] |
Fan SX, Li PJ, Gong ZQ, Ren WX, He N (2008). Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere, 71, 1593-1598.
DOI URL PMID |
[5] | Haberl R, Grego S, Langergraber G, Kadlec RH, Cicalini AR, Dias SM, Novais JM, Aubert S, Gerth A, Thomas H, Hebner A (2003). Constructed wetlands for the treatment of organic pollutants. Journal of Soils and Sediments, 3, 109-124. |
[6] |
Hallberg KB, Johnson BD (2005). Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Science of the Total Environment, 338, 53-66.
DOI URL PMID |
[7] | Heinrich D, Hess D (1985). Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractants. Canadian Journal of Microbiology, 31, 26-31. |
[8] |
Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Equchi M, Nasu M (2000). Monitoring impact of in suit biostimulation treatment on ground water bacterial community by DGGE. FEMS Microbiology Ecology, 32, 129-141.
DOI URL PMID |
[9] |
Jenkins MB, Lion LW (1993). Mobile bacteria and transport of poly-nuclear aromatic hydrocarbons in porous media. Applied and Environmental Microbiology, 59, 3306-3313.
DOI URL PMID |
[10] |
Li M, Zhou QH, Tao M, Wang Y, Jiang LJ, Wu ZB (2010). Comparative study of microbial community structure in different filter media of constructed wetland. Journal of Environmental Sciences, 22, 127-133.
DOI URL |
[11] | Li RH, Guan YT, He M, Hu HY, Jiang ZP (2006). Pilot- scale study on riparian mixed plant zones treating polluted river water. Environmental Science, 27, 651-654 (in Chinese with English abstract) |
[ 李睿华, 管运涛, 何苗, 胡洪营, 蒋展鹏 (2006). 河岸混合植物带处理受污染河水中试研究. 环境科学, 27, 651-654.] | |
[12] |
Liu M, Yang Y, Xu S, Liu H, Hou L, Ou D, Liu Q, Cheng S (2006). HCHs and DDTs in salt marsh plants (Scirpus) from the Yangtze estuary and nearby coastal areas, China. Chemosphere, 62, 440-448.
DOI URL PMID |
[13] |
Miglioranza KSB, de Moreno JEA, Moreno VJ (2004). Organochlorine pesticides sequestered in the aquatic macrophyte Schoenoplectus californicus (C.A. Meyer) Soják from a shallow lake in Argentina. Water Research, 38, 1765-1772.
DOI URL PMID |
[14] |
Ruiz-Rueda O, Hallin S, Baneras L (2009). Structure and function of denitrifying and nitrifying bacteria communities in relation to the plant species in a constructed wetland. FEMS Microbiology Ecology, 67, 308-319.
DOI URL PMID |
[15] |
Sirivedhim T, Gray KA (2006). Factors affecting denitrification rates in experimental wetlands: field and laboratory studies. Ecological Engineering, 26, 167-181.
DOI URL |
[16] |
Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, 67, 4742-4751.
URL PMID |
[17] |
Tawney L, Becker JG, Baldwin AH (2008). A novel dual-compartment, continuous-flow wetland microcosm to assess cis-dichloroethene removal from the rhizosphere. International Journal of Phytoremediation, 10, 455-471.
URL PMID |
[18] |
Toyama T, Sato Y, Inoue D, Sei K, Chang YC, Kikuchi S, Ike M (2009) Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis. Journal of Bioscience and Bioengineering, 108, 147-150.
DOI URL PMID |
[19] | Wang AL (2011). Dissipation Behaviors of Phthalic Acid Esters in the Rhizosphere of Wetland Plants. PhD dissertation, Tianjin University, Tianjin. (in Chinese with English abstract) |
[ 王爱丽 (2011). 酞酸酯在湿地植物根际环境中的消减行为. 博士学位论文, 天津大学, 天津.] | |
[20] | Xiang XM, Song CX, Li YS, Sun XY (2004). Microorganism features of Typha Latifolia and Phragmites Australis at rhizosphere. Chinese Journal of Environmental Protection Science, 30, 35-38. (in Chinese with English abstract) |
[ 项学敏, 宋春霞, 李彦生, 孙祥宇 (2004). 湿地植物芦苇和东方香蒲根际微生物特性研究. 环境保护科学, 30, 35-38.] | |
[21] | Xu XL, Lu XX, Lei XD, Cao LK (2012). Effects of hydrophytes on removal of nitrogen and phosphorus in eutrophic water. Journal of Shanghai Jiaotong University (Agricultural Science), 30, 8-14. (in Chinese with English abstract) |
[ 徐秀玲, 陆欣欣, 雷先德, 曹林奎 (2012). 不同水生植物对富营养化水体中氮磷去除效果的比较. 上海交通大学学报(农业科学版), 30, 8-14.] | |
[22] |
Xue D, Yao HY, Ge DY, Huang CY (2008). Soil microbial community structure in diverse land use systems: a comparative study using Biolog, DGGE, and PLFA analyses. Pedosphere, 18, 653-663.
DOI URL |
[23] | Yang R (2011) The Studies on Microbial Ecology of the Rhizosphere of Emergent Plants. Master degree dissertation, Tianjin University, Tianjin. (in Chinese with English abstract) |
[ 杨瑞. 挺水植物根际微生物生态研究. 硕士学位论文, 天津大学, 天津.] | |
[24] |
Zelles L (1997). Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 35, 275-294.
DOI URL PMID |
[25] |
Zhang QR, Zhou QX, Ren LP, Zhu YG, Sun SL (2006). Ecological effects of crude oil residues on the functional diversity of soil microorganisms in three weed rhizospheres. Journal of Environmental Sciences, 18, 1101-1106.
DOI URL |
[26] | Zhao XG (2011). Effect of Emergent Plants on the Circulation of Nitrogen and Phosphorus of Eutrophic Lakes. Master degree dissertation, Tianjin University, Tianjin. (in Chinese with English abstract) |
[ 赵旭光. 挺水植物对富营养化湖泊水体中氮磷循环的影响. 硕士学位论文, 天津大学, 天津.] |
[1] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[2] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[3] | 胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响[J]. 植物生态学报, 2023, 47(6): 847-855. |
[4] | 徐干君, 吴胜义, 李伟, 赵欣胜, 聂磊超, 唐希颖, 翟夏杰. 陕西黄河湿地自然保护区碳储量估算[J]. 植物生态学报, 2023, 47(4): 469-478. |
[5] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[6] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[7] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[8] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[9] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[10] | 韩广轩, 王法明, 马俊, 肖雷雷, 初小静, 赵明亮. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4): 373-382. |
[11] | 文可, 姚焕玫, 龚祝清, 纳泽林, 韦毅明, 黄以, 陈华权, 廖鹏任, 唐丽萍. 水淹频率变化对鄱阳湖增强型植被指数的影响[J]. 植物生态学报, 2022, 46(2): 148-161. |
[12] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[13] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
[14] | 薛鹏飞, 李文龙, 朱高峰, 周华坤, 刘陈立, 晏和飘. 黄河首曲玛曲县高寒湿地景观格局演变[J]. 植物生态学报, 2021, 45(5): 467-475. |
[15] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19