植物生态学报 ›› 2013, Vol. 37 ›› Issue (11): 1035-1042.DOI: 10.3724/SP.J.1258.2013.00107
所属专题: 植物功能性状
收稿日期:
2013-07-16
接受日期:
2013-09-30
出版日期:
2013-07-16
发布日期:
2013-11-06
通讯作者:
孔德良
基金资助:
MIAO Yuan1,WU Hui-Fang1,MA Cheng-En2,KONG De-Liang3,1,*()
Received:
2013-07-16
Accepted:
2013-09-30
Online:
2013-07-16
Published:
2013-11-06
Contact:
KONG De-Liang
摘要:
吸收根(absorption root)一般是指根枝系统末端少数几级具有初生结构、负责物质吸收的根。吸收根功能性状被广泛用于评价和预测植物个体到生态系统水平上的一系列功能和过程。菌根真菌侵染是吸收根的一个关键性状, 它可以深刻影响吸收根的形态、结构, 以及功能性状之间的关系。该文针对与吸收功能密切相关的菌根真菌与根毛和根直径之间的关系进行了研究综述, 提出了真菌侵染、根毛和化学防御之间关系的一个假说; 探讨了温带和热带不同类型的吸收根如何通过菌根真菌影响根的功能性状, 从而适应不同的水热条件、养分状况和能量消耗; 提出一些需要关注的议题和研究方向, 以期为菌根真菌与吸收根功能性状之间关系的研究提供借鉴。
苗原,吴会芳,马承恩,孔德良. 菌根真菌与吸收根功能性状的关系: 研究进展与评述. 植物生态学报, 2013, 37(11): 1035-1042. DOI: 10.3724/SP.J.1258.2013.00107
MIAO Yuan,WU Hui-Fang,MA Cheng-En,KONG De-Liang. Relationship between mycorrhizal fungi and functional traits in absorption roots: research progress and synthesis. Chinese Journal of Plant Ecology, 2013, 37(11): 1035-1042. DOI: 10.3724/SP.J.1258.2013.00107
图1 AM树种吸收根菌根真菌与根毛以及根防御性状之间关系的概念图。“-”表示负相关; “?”表示关系有待确定。
Fig. 1 The hypothesized relationships among mycorrhizal fungi, root hair and root defense traits in AM tree species. The symbol “-” stands for negative correlation; “?” indicates the uncertain relationship.
平均直径 Average diameter | 直径变异 Variation in diameter | |
---|---|---|
温带生态系统 Temperate ecosystems | 0.24 mm | 0.11-0.42 mm |
热带生态系统 Tropical ecosystems | 0.38 mm | 0.07-0.89 mm |
表1 温带和热带树种吸收根直径比较(数据引自常文静和郭大立, 2008)
Table 1 Comparisons of absorption root diameter for tree species in temperate and tropical ecosystems (Data are cited from Chang & Guo, 2008)
平均直径 Average diameter | 直径变异 Variation in diameter | |
---|---|---|
温带生态系统 Temperate ecosystems | 0.24 mm | 0.11-0.42 mm |
热带生态系统 Tropical ecosystems | 0.38 mm | 0.07-0.89 mm |
[1] | Baylis GTS (1975). The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB eds. Endomycorrhizas. Academic Press, New York. 373-389. |
[2] |
Brundrett MC (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154, 275-304.
DOI URL |
[3] |
Brundrett MC (2009). Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37-77.
DOI URL |
[4] | Chang WJ, Guo DL (2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese Version), 32, 1248-1257. (in Chinese with English abstract) |
[ 常文静, 郭大立 (2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异的研究. 植物生态学报, 32, 1248-1257.] | |
[5] | Chen WL, Zeng H, Eissenstat DM, Guo DL (2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856. |
[6] |
Cheng L, Booker FL, Tu C, Burkey KO, Zhou LS, Shew HD, Rufty TW, Hu SJ (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337, 1084-1087.
DOI URL PMID |
[7] | Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forests. Science, 1615-1618. |
[8] |
Comas LH, Eissenstat DM (2009). Patterns in root trait variation among 25 co-existing North American forest species. New Phytologist, 182, 919-928.
DOI URL PMID |
[9] |
Cornelissen J, Aerts R, Cerabolini B, Werger M, van der Heijden M (2001). Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129, 611-619.
URL PMID |
[10] |
Druebert C, Lang C, Valtanen K, Polle A (2009). Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant, Cell & Environment, 32, 992-1003.
URL PMID |
[11] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60. |
[12] |
Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-42.
DOI URL |
[13] |
Espeleta JF, West JB, Donovan LA (2009). Tree species fine-root demography parallels habitat specialization across a sandhill soil resource gradient. Ecology, 90, 1773-1787.
URL PMID |
[14] |
Fan PP, Guo DL (2010). Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia, 163, 509-515.
URL PMID |
[15] |
Fan ZX, Zhang SB, Hao GY, Slik JWF, Cao KF (2012). Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. Journal of Ecology, 100, 732-741.
DOI URL |
[16] |
Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 109, 2666-2671.
URL PMID |
[17] |
Fernandez CW, Koide R (2012). The role of chitin in the decomposition of ectomycorrhizal fungal litter. Ecology, 93, 24-28.
DOI URL PMID |
[18] |
Fitter AH (2004). Magnolioid roots-hairs, architecture and mycorrhizal dependency. New Phytologist, 164, 15-16.
DOI URL |
[19] |
Freschet JT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Evidence of the plant economics spectrum in a subarctic flora. Journal of Ecology, 98, 362-373.
DOI URL |
[20] |
Gu JC, Yu SQ, Sun Y, Wang ZQ, Guo DL (2011). Influence of root structure on root survivorship: an analysis of 18 tree species using a minirhizotron method. Ecological Research, 26, 755-762.
DOI URL |
[21] | Guo DL, Wang ZQ (2008). Root ecology. Journal of Plant Ecology (Chinese Version), 32, 1213-1216. (in Chinese) |
[ 郭大立, 王政权 (2008). 根系生态学. 植物生态学报, 32, 1213-1216.] | |
[22] |
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
URL PMID |
[23] |
Hobbie JE, Hobbie EA (2006). N-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology, 87, 816-822.
URL PMID |
[24] |
Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011). Species- and community-level patterns in fine root traits along a 12000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99, 954-963.
DOI URL |
[25] | Jakobson I, Chen B, Munkvold L, Lundsgaard T, Zhu YG (2005). Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant, Cell & Environment, 28, 928-938. |
[26] |
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333, 880-882.
DOI URL PMID |
[27] |
Koide RT, Fernandez CW, Peoples MS (2011). Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition? New Phytologist, 191, 508-514.
URL PMID |
[28] |
Kong DL, Wu HF, Wang M, Simmons M, Lu XT, Yu Q, Han XG (2010). Structural and chemical differences between shoot- and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant and Soil, 336, 209-217.
DOI URL |
[29] |
Langley JA, Chapman SK, Hungate BA (2006). Ectomycorrhizal colonization slows root decomposition: the post- mortem fungal legacy. Ecology Letters, 9, 955-959.
URL PMID |
[30] |
Long YQ, Kong DL, Chen ZX, Zeng H (2013). Variation of the linkage of root function and root branch order. PloS One, 8, e57153.
DOI URL PMID |
[31] |
Ma CE, Kong DL, Chen ZX, Guo JF (2012). Root growth into litter layer and its impact on litter decomposition: a review. Chinese Journal of Plant Ecology, 36, 1197-1204. (in Chinese with English abstract)
DOI URL |
[ 马承恩, 孔德良, 陈正侠, 郭俊飞 (2012). 根系在凋落物层中的生长行为及其对分解的影响. 植物生态学报, 36, 1197-1204.]
DOI URL |
|
[32] |
McCormack ML, Adams TS, Smithwick EA, Eissenstat DM (2012). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195, 823-831.
DOI URL PMID |
[33] |
Peng SB, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993). Growth depression in mycorrhizal citrus at high-phosphorus supply (analysis of carbon costs). Plant Physiology, 101, 1063-1071.
DOI URL PMID |
[34] |
Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros MP, Sterck F, Villegas Z, Sass-Klaassen US (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rain forest tree species. New Phytologist, 185, 481-492.
URL PMID |
[35] |
Pregitzer KS, de Forest JL, Burton AJ, Allen MF, Ruger WR, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[36] |
Raven JA, Edwards D (2001). Roots: evolutionary origins and biogeochemical significance. Journal of Experimental Botany, 52, 381-401.
DOI URL PMID |
[37] |
Read DJ (1991). Mycorrhizas in ecosystems. Experientia, 47, 376-391.
DOI URL |
[38] | Read DJ, Perez-Moreno J (2003). Mycorrhizas and nutrient cycling in ecosystems―a journey towards relevance? New Phytologist, 157, 475-492. |
[39] | Reinhardt DR, Miller RM (1990). Size classes of root diameter and mycorrhizal fungal colonization in two temperate grassland communities. New Phytologist, 116, 129-136. |
[40] | Schweiger PF, Robson AD, Barrow NJ (1995). Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytologist, 131, 247-254. |
[41] |
Seifert EK, Bever JD, Maron J (2009). Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology, 90, 1055-1062.
DOI URL PMID |
[42] | Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL (2008). Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China. Journal of Plant Ecology (Chinese Version), 32, 1217-1226. (in Chinese with English abstract) |
[ 师伟, 王政权, 刘金梁, 谷加存, 郭大立 (2008). 帽儿山天然次生林20个阔叶树种细根形态. 植物生态学报, 32, 1217-1226.] | |
[43] |
Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011). Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytologist, 192, 699-712.
DOI URL PMID |
[44] | Smith S, Read D (2008). Mycorrhizal Symbiosis. 3rd edn. Academic Press, London. |
[45] |
Sperry JS, Meinzer FC, McCulloh KA (2008). Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell & Environment, 31, 632-645.
DOI URL PMID |
[46] | St John TV (1980). Root size, root hairs and mycorrhizal infection: a re-examination of Baylis’s hypothesis with tropical trees. New Phytologist, 84, 483-487. |
[47] | Talbot JM, Allison SD, Treseder KK (2008). Decomposers in disguise- mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955-963. |
[48] |
Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508.
DOI URL PMID |
[49] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[50] | Wahl S, Ryser P (2000). Root tissue structure is linked to ecological strategies of grasses. New Phytologist, 148, 459-471. |
[51] |
Wang B, Qiu YL (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299-363.
DOI URL PMID |
[52] |
Wang JJ, Guo YY, Guo DL, Yin SL, Kong DL, Liu YS, Zeng H (2012). Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal. Environmental Science and Technology, 46, 769-777.
DOI URL PMID |
[53] | Wei X, Liu X, Chen HB (2008). Anatomical and functional heterogeneity among different root orders of Phellodendron amurense. Journal of Plant Ecology (Chinese Version), 32, 1238-1247. (in Chinese with English abstract) |
[ 卫星, 刘颖, 陈海波 (2008). 黄波罗不同根序的解剖结构及其功能异质性. 植物生态学报, 32, 1238-1247.] | |
[54] | Wells CE, Eissenstat DM (2001). Marked differences in survivorship among apple roots of different diameter. Ecology, 82, 882-892. |
[55] |
Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397.
DOI URL |
[56] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[57] |
Xia MX, Guo DL, Pregitzer KS (2010). Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188, 1065-1074.
DOI URL PMID |
[58] |
Xu Y, Gu JC, Dong XY, Liu Y, Wang ZQ (2011). Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China. Chinese Journal of Plant Ecology, 35, 955-964. (in Chinese with English abstract)
DOI URL |
[ 许旸, 谷加存, 董雪云, 刘颖, 王政权 (2011). 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织碳氮含量. 植物生态学报, 35, 955-964.]
DOI URL |
|
[59] |
Yin SL, Kong DL, Guo DL (2011). Seasonal variation of fine root tissue N concentration of nine common tree species in Dinghushan, Guangdong, China. Chinese Journal of Plant Ecology, 35, 1106-1116. (in Chinese with English abstract)
DOI URL |
[ 银森录, 孔德良, 郭大立 (2011). 鼎湖山九种常见树木细根组织N浓度的季节变化. 植物生态学报, 35, 1106-1116.]
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[8] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[9] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[10] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[11] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[12] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[13] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[14] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[15] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19