植物生态学报 ›› 2014, Vol. 38 ›› Issue (2): 159-166.DOI: 10.3724/SP.J.1258.2014.00014
杨晓霞1,2, 任飞1,2, 周华坤1, 贺金生1,3,*()
收稿日期:
2013-07-01
接受日期:
2013-09-22
出版日期:
2014-07-01
发布日期:
2014-02-12
通讯作者:
贺金生
作者简介:
* (E-mail: jshe@pku.edu.cn)基金资助:
YANG Xiao-Xia1,2, REN Fei1,2, ZHOU Hua-Kun1, HE Jin-Sheng1,3,*()
Received:
2013-07-01
Accepted:
2013-09-22
Online:
2014-07-01
Published:
2014-02-12
Contact:
HE Jin-Sheng
摘要:
青藏高原正经历着明显的温暖化过程, 由此引起的土壤温度的升高促进了土壤中微生物的活性, 同时青藏高原东缘地区大气氮沉降十分明显, 并呈逐年增加的趋势, 这些环境变化均促使土壤中可利用营养元素增加, 因此深入了解青藏高原高寒草甸植物生物量对可利用营养元素增加的响应, 是准确预测未来全球变化背景下青藏高原高寒草甸碳循环过程的重要基础。该研究基于在青藏高原高寒草甸连续4年(2009-2012年)氮、磷添加后对不同功能群植物地上生物量、群落地上和地下生物量的测定, 探讨高寒草甸生态系统碳输入对氮、磷添加的响应。结果表明: (1)氮、磷添加均极显著增加了禾草的地上绝对生物量及其在群落总生物量中所占的比例, 同时均显著降低了杂类草在群落总生物量中的比例, 此外磷添加极显著降低了莎草地上绝对生物量及其在群落总生物量中所占的比例。(2)氮、磷添加均显著促进了青藏高原高寒草甸的地上生物量增加, 分别增加了24%和52%。(3)氮添加对高寒草甸地下生物量无显著影响, 而磷添加后地下生物量有增加的趋势。(4)氮添加对高寒草甸植物总生物量无显著影响, 而磷添加后植物总生物量显著增加。研究表明, 氮、磷添加可缓解青藏高原高寒草甸植物生长的营养限制, 促进植物地上部分的生长, 然而高寒草甸植物的生长极有可能更受土壤中可利用磷含量的限制。
杨晓霞, 任飞, 周华坤, 贺金生. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 2014, 38(2): 159-166. DOI: 10.3724/SP.J.1258.2014.00014
YANG Xiao-Xia, REN Fei, ZHOU Hua-Kun, HE Jin-Sheng. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2014, 38(2): 159-166. DOI: 10.3724/SP.J.1258.2014.00014
图1 氮(A)、磷(B)添加对3种不同功能群地上生物量的影响(平均值±标准误差)。
Fig. 1 Effects of nitrogen addition (A) and phosphorus addition (B) on aboveground biomass of three different functional groups (mean ± SE). **, p < 0.01; ***, p < 0.001.
图2 氮(A)、磷(B)添加对3种不同功能群的地上生物量在群落总生物量中所占比例的影响(平均值±标准误差)。
Fig. 2 Effects of nitrogen addition (A) and phosphorus addition (B) on the proportions of the three different functional groups aboveground biomass of the community biomass (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | ||||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
莎草生物量 Sedge biomass | 0.28 | 0.611 | 15.60 | 0.006 | 2.75 | 0.141 | ||
莎草生物量 Sedge biomass (%) | 0.01 | 0.910 | 17.53 | 0.004 | 0.79 | 0.403 | ||
禾本生物量 Grass biomass | 15.24 | 0.006 | 39.95 | <0.001 | 0.80 | 0.400 | ||
禾本生物量 Grass biomass (%) | 12.78 | 0.009 | 19.64 | 0.003 | 0.19 | 0.676 | ||
杂类草生物量 Forb biomass | 1.91 | 0.210 | 0.13 | 0.730 | 0.97 | 0.358 | ||
杂类草生物量 Forb biomass (%) | 9.91 | 0.016 | 9.34 | 0.018 | 0.04 | 0.844 |
表1 氮、磷添加对不同功能群的地上生物量(g·m-2·a-1)和其在群落总生物量中所占比例(%)的影响的双因素方差分析表
Table 1 Two way ANOVA of the effects of nitrogen and phosphorous additions on aboveground biomass of different functional groups and their proportions of the community biomass
氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | ||||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
莎草生物量 Sedge biomass | 0.28 | 0.611 | 15.60 | 0.006 | 2.75 | 0.141 | ||
莎草生物量 Sedge biomass (%) | 0.01 | 0.910 | 17.53 | 0.004 | 0.79 | 0.403 | ||
禾本生物量 Grass biomass | 15.24 | 0.006 | 39.95 | <0.001 | 0.80 | 0.400 | ||
禾本生物量 Grass biomass (%) | 12.78 | 0.009 | 19.64 | 0.003 | 0.19 | 0.676 | ||
杂类草生物量 Forb biomass | 1.91 | 0.210 | 0.13 | 0.730 | 0.97 | 0.358 | ||
杂类草生物量 Forb biomass (%) | 9.91 | 0.016 | 9.34 | 0.018 | 0.04 | 0.844 |
氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | ||||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
AGB (g·m-2·a-1) | 13.61 | 0.008 | 66.38 | < 0.001 | 0.95 | 0.363 | ||
BGB (g·m-2·a-1) | 1.80 | 0.216 | 4.82 | 0.060 | 0.02 | 0.880 | ||
TB (g·m-2·a-1) | 0.002 | 0.969 | 15.22 | 0.008 | 1.54 | 0.260 | ||
R/S | 3.50 | 0.086 | 1.24 | 0.309 | 0.07 | 0.806 |
表2 氮、磷添加对地上生物量(AGB)、地下生物量(BGB)、总生物量(TB)和地下地上生物量比(R/S)影响的双因素方差分析表
Table 2 Two-way ANOVA of the effects of nitrogen and phosphorus additions on aboveground biomass (AGB), belowground biomass (BGB), total biomass (TB) and the ratio of belowground biomass to aboveground biomass (R/S)
氮添加 N addition | 磷添加 P addition | 氮磷交互作用 N × P interaction | ||||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
AGB (g·m-2·a-1) | 13.61 | 0.008 | 66.38 | < 0.001 | 0.95 | 0.363 | ||
BGB (g·m-2·a-1) | 1.80 | 0.216 | 4.82 | 0.060 | 0.02 | 0.880 | ||
TB (g·m-2·a-1) | 0.002 | 0.969 | 15.22 | 0.008 | 1.54 | 0.260 | ||
R/S | 3.50 | 0.086 | 1.24 | 0.309 | 0.07 | 0.806 |
图3 氮、磷添加对地上生物量(A)、地下生物量(B)和总生物量(C)的影响(平均值±标准误差)。
Fig. 3 Effects of nitrogen and phosphorus additions on aboveground biomass (A), belowground biomass (B) and total biomass (C) (mean ± SE). **, p < 0.01; ***, p < 0.001.
对照 CK | 氮添加 N addition | 磷添加 P addition | 氮磷添加 N, P addition | |
---|---|---|---|---|
AGB (g C·m-2) | 146.5 ± 14.0a | 204.8 ± 7.8b | 250.9 ± 12.7c | 281.5 ± 7.9d |
BGB (g C·m-2) | 558.0 ± 68.4a | 510.5 ± 36.8a | 709.1 ± 49.5b | 598.8 ± 101.3a |
TB (g C·m-2) | 704.6 ± 64.3a | 715.3 ± 40.9a | 960.0 ± 41.8b | 880.3 ± 95.8ab |
表3 不同处理下的地上(AGB)、地下(BGB)和总生物量(TB)碳库(平均值±标准误差)
Table 3 Aboveground biomass (AGB), belowground biomass (BGB) and total biomass (TB) carbon stock under different treatments (mean ± SE)
对照 CK | 氮添加 N addition | 磷添加 P addition | 氮磷添加 N, P addition | |
---|---|---|---|---|
AGB (g C·m-2) | 146.5 ± 14.0a | 204.8 ± 7.8b | 250.9 ± 12.7c | 281.5 ± 7.9d |
BGB (g C·m-2) | 558.0 ± 68.4a | 510.5 ± 36.8a | 709.1 ± 49.5b | 598.8 ± 101.3a |
TB (g C·m-2) | 704.6 ± 64.3a | 715.3 ± 40.9a | 960.0 ± 41.8b | 880.3 ± 95.8ab |
[1] | Chapin FS III, Matson PA (2011). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer-Verlag, New York. |
[2] |
Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL PMID |
[3] | Fang JY, Liu GH, Xu SL (1996). Carbon storage in terrestrial ecosystem of China. In: Wang GC, Wen YP eds. The Measurement of Greenhouse Gas and Their Release and Related Processes. China Environmental Science Press, Beijing. 391-397. (in Chinese) |
[ 方精云, 刘国华, 徐嵩龄 (1996). 中国陆地生态系统的碳库. 见: 王庚辰, 温玉璞编. 温室气体浓度和排放监测及相关过程. 中国环境科学出版社, 北京. 391-397.] | |
[4] |
Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
DOI URL PMID |
[5] |
Henry HA, Chiariello NR, Vitousek PM, Mooney HA, Field CB (2006). Interactive effects of fire, elevated carbon dioxide, nitrogen deposition, and precipitation on a California annual grassland. Ecosystems, 9, 1066-1075.
DOI URL |
[6] | Hungate BA, Naiman RJ, Apps M, Cole JJ, Moldan B, Satake K, Stewart JW, Victoria R, Vitousek PM, Melillo J (2003). Disturbance and element interactions. In: Melillo JM, Fieldd CB, Moldan B eds. Interactions of the Major Biogeochemical Cycles. Island Press, Washington. 47-62. |
[7] | IPCC (2007). Climate Change 2007: Synthesis Report. Sum- mary for Policymakers. https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf.Cited: July 2007. |
[8] |
Jiang CM, Yu GR, Li YN, Cao GM, Yang ZP, Sheng WP, Yu WT (2012). Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. Ecological Engineering, 44, 1-9.
DOI URL |
[9] |
Jobbágy EG, Sala OE (2000). Controls of grass and shrub aboveground production in the Patagonian steppe. Ecological Applications, 10, 541-549.
DOI URL |
[10] |
Keith H, Raison RJ, Jacobsen KL (1997). Allocation of carbon in a mature eucalypt forest and some effects of soil phosphorus availability. Plant and Soil, 196, 81-99.
DOI URL |
[11] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL PMID |
[12] |
Lee M, Manning P, Rist J, Power SA, Marsh C (2010). A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2047-2056.
DOI URL |
[13] |
Liu XD, Chen BD (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
DOI URL |
[14] |
Lü C, Tian H (2007). Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. Journal of Geophysical Research, 112, D22S05, doi: 10.1029/2006JD007990.
DOI URL PMID |
[15] |
Luo CY, Xu GP, Chao ZG, Wang SP, Lin XW, Hu YG, Zhang ZH, Duan JC, Chang XF, Su AL (2010). Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau. Global Change Biology, 16, 1606-1617.
DOI URL |
[16] |
Majdi H, Andersson P (2005). Fine root production and turnover in a Norway spruce stand in northern Sweden: effects of nitrogen and water manipulation. Ecosystems, 8, 191-199.
DOI URL |
[17] |
Mooney HA, Vitousek PM, Matson PA (1987). Exchange of materials between terrestrial ecosystems and the atmosphere. Science, 238, 926-932.
DOI URL PMID |
[18] | Odum EP, Barrett GW (2005). Fundamentals of Ecology. 5th edn. Thomson Brooks/Cole, California. |
[19] | Piao SL, Fang JY, Zhou LM, Tan K, Tao S (2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 21, doi: 10.1029/2005GB002634. |
[20] |
Raison RJ (1979). Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil, 51, 73-108.
DOI URL |
[21] |
Ren ZW, Li Q, Chu CJ, Zhao LQ, Zhang JQ, Ai DXC, Yang YB, Wang G (2010). Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 3, 25-31.
DOI URL |
[22] |
Rui YC, Wang YF, Chen CR, Zhou XQ, Wang SP, Xu ZH, Duan JC, Kang XM, Lu SB, Luo CY (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357, 73-87.
DOI URL |
[23] |
Scurlock J, Johnson K, Olson R (2002). Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8, 736-753.
DOI URL |
[24] | Shaver GR (1986). Woody stem production in Alaskan tundra shrubs. Ecology, 67, 660-669. |
[25] | Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin A (1998). Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and light. Ecological Monographs, 68, 75-97. |
[26] | Shen ZX, Zhou XM, Chen ZZ, Zhou HK (2002). Response of plant groups to simulated rainfall and nitrogen supply in alpine Kobresia humilis meadow. Acta Phytoecologica Sinica, 26, 288-294. (in Chinese with English abstract) |
[ 沈振西, 周兴民, 陈佐忠, 周华坤 (2002). 高寒矮嵩草草甸植物类群对模拟降水和施氮的响应. 植物生态学报, 26, 288-294.] | |
[27] |
Song MH, Yu FH, Ouyang H, Cao GM, Xu XL, Cornelissen JHC (2012). Different inter-annual responses to avail- ability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. Global Change Biology, 18, 3100-3111.
DOI URL PMID |
[28] |
Stöcklin J, Schweizer K, Körner C (1998). Effects of elevated CO2 and phosphorus addition on productivity and community composition of intact monoliths from calcareous grassland. Oecologia, 116, 50-56.
DOI URL PMID |
[29] | Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447. |
[30] |
Verhoeven JTA, Koerselman W, Meuleman AFM (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends in Ecology & Evolution, 11, 494-497.
URL PMID |
[31] | Vitousek PM (2004). Nutrient Cycling and Limitation: Hawai’i As A Model System. Princeton University Press, Princeton. |
[32] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implica- tions, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15. |
[33] | Xin XJ (2011). Effects of N, P Addition on Above/Below- Ground Biomass Allocation and Plant Functional Types’ Composition in a Sub-Alpine Meadow. Master degree dissertation, Lanzhou University, Lanzhou. 21. (in Chinese) |
[ 辛小娟 (2011). 氮、磷添加对亚高山草甸地上/地下生物量分配及植物功能群组成的影响. 硕士学位论文, 兰州大学, 兰州. 21.] | |
[34] | Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA (2003). Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecological Monographs, 73, 585-604. |
[35] | Zhao XQ, Zhou XM (1999). Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 28, 642-647. |
[36] | Zhou XM (2001). Chinese Kobresia Meadows. Science Press, Beijing. (in Chinese) |
[ 周兴民 (2001). 中国嵩草草甸. 科学出版社, 北京.] |
[1] | 罗来聪 赖晓琴 白健 李爱新 方海富 唐明 胡冬南 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物 乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 朱玉英 张华敏 丁明军 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 李变变 张凤华 赵亚光 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢以及生物量的影响[J]. 植物生态学报, 2023, 47(1): 0-0. |
[4] | 林马震 黄勇 李洋 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 0-0. |
[5] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[6] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[7] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[8] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[9] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[10] | 于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6): 632-641. |
[11] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[12] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[13] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[14] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[15] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19