植物生态学报 ›› 2014, Vol. 38 ›› Issue (2): 147-158.DOI: 10.3724/SP.J.1258.2014.00013
所属专题: 青藏高原植物生态学:种群生态学
叶鑫1,2,3, 周华坤2,*(), 刘国华1, 姚步青2, 赵新全2
收稿日期:
2013-05-30
接受日期:
2013-08-15
出版日期:
2014-05-30
发布日期:
2014-02-12
通讯作者:
周华坤
作者简介:
*(E-mail: qhzhhk1974@yahoo.com.cn)基金资助:
YE Xin1,2,3, ZHOU Hua-Kun2,*(), LIU Guo-Hua1, YAO Bu-Qing2, ZHAO Xin-Quan2
Received:
2013-05-30
Accepted:
2013-08-15
Online:
2014-05-30
Published:
2014-02-12
Contact:
ZHOU Hua-Kun
摘要:
植物物候特征对环境条件的季节和年际变化具有较强的指示作用, 因此研究植物物候特征对环境条件变化的响应, 对理解植物和环境之间的相互作用关系、植物的适应机制和生存策略, 以及应对全球变化都具有重要的意义。该研究基于2009-2011年高寒矮生嵩草(Kobresia humilis)草甸养分水分控制实验的植物物候观测数据资料, 采用巢式方差分析、物候指数和聚类分析方法, 开展了高寒矮生嵩草草甸主要植物物候特征对养分和水分添加的响应研究。结果表明: (1)养分添加处理之间植物返青期和枯黄期均无显著差异, 但养分添加中氮磷处理对主要物种作用较明显, 使莎草科、禾本科、杂类草主要代表植物的返青期和枯黄期推迟。(2)增雪处理效应明显, 主要优势物种无论是何种养分添加, 在增雪处理后均表现出花期物候提前的趋势(p < 0.01), 同时增雪处理使杂类草植物返青期显著提前(p < 0.05)。增水处理对植物的作用效果并不一致, 其中垂穗披碱草(Elymus nutans)和双柱头藨草(Scirpus distigmaticus)的枯黄期显著推迟(p < 0.05), 而杂类草枯黄期提前。(3)养分添加后, 不同物种的物候特征表现出显著差异(p < 0.01), 例如雪白委陵菜(Potentilla nivea)枯黄期显著推迟(p < 0.05), 而双柱头藨草的枯黄期显著提前(p < 0.05), 但物种对养分添加响应的差异以植物类群为单位, 禾本科植物表现为返青期推迟, 而莎草科植物表现为返青期提前。(4)矮生嵩草草甸主要植物营养生长期与果后营养期持续天数之间呈负相关关系, 主要植物物候特征经聚类分析可以分为3个类群, 3个类群经氮磷钾、钾和氮钾三个养分添加处理后植物物候特征变化较大。研究表明, 高寒矮生嵩草草甸植物物候特征在物种水平响应和水分添加后的响应表现出较大差异, 而对养分添加的响应不显著。
叶鑫, 周华坤, 刘国华, 姚步青, 赵新全. 高寒矮生嵩草草甸主要植物物候特征对养分和水分添加的响应. 植物生态学报, 2014, 38(2): 147-158. DOI: 10.3724/SP.J.1258.2014.00013
YE Xin, ZHOU Hua-Kun, LIU Guo-Hua, YAO Bu-Qing, ZHAO Xin-Quan. Responses of phenological characteristics of major plants to nutrient and water additions in Kobresia humilis alpine meadow. Chinese Journal of Plant Ecology, 2014, 38(2): 147-158. DOI: 10.3724/SP.J.1258.2014.00013
养分类别 Nutrient category | 养分形态 Nutrient form | 添加量 Addition (g·36 m-2·a-1) |
---|---|---|
N | CO(NH2)2 | 771.43 |
P | Ca(H2PO4)2·H2O | 1 464.39 |
K | K2SO4 | 802.40 |
C | C12H22O11 | 5 148.00 |
Ca* | CaCO3 | 538.39 |
Mg* | MgCO3 | 374.67 |
Fe* | FeSO4·7H2O | 3 043.58 |
Mn* | MnSO4 | 247.54 |
Zn* | ZnSO4·7H2O | 158.26 |
Cu* | CuSO4·5H2O | 141.51 |
B* | Na2B4O7·10H2O | 31.77 |
Mo* | Na2MoO4·2H2O | 9.08 |
表1 每年每小区化肥施加量(g)
Table 1 Amount of applied fertilizer per plot per year (g)
养分类别 Nutrient category | 养分形态 Nutrient form | 添加量 Addition (g·36 m-2·a-1) |
---|---|---|
N | CO(NH2)2 | 771.43 |
P | Ca(H2PO4)2·H2O | 1 464.39 |
K | K2SO4 | 802.40 |
C | C12H22O11 | 5 148.00 |
Ca* | CaCO3 | 538.39 |
Mg* | MgCO3 | 374.67 |
Fe* | FeSO4·7H2O | 3 043.58 |
Mn* | MnSO4 | 247.54 |
Zn* | ZnSO4·7H2O | 158.26 |
Cu* | CuSO4·5H2O | 141.51 |
B* | Na2B4O7·10H2O | 31.77 |
Mo* | Na2MoO4·2H2O | 9.08 |
图1 实验样地设计图。I, 养分添加; II, 养分添加并夏季增雨; III, 养分添加并冬季增雪; IV, 预留区; ①观测区; ②采样区; ③其他实验区。
Fig. 1 Design draws of experimental plots. I, nutrient addition; II, nutrient addition and summer water addition; III, nutrient addition and winter snow addition; IV, reserve zone; ①, observation zone; ②, sampling zone; ③ other experimental plot.
图2 养分添加后矮生嵩草的开花比率。C, 碳; CK, 对照; K, 钾; N, 氮; NK, 氮钾混合肥料; NP, 氮磷混合肥料; NPK, 氮磷钾混合肥料; P, 磷; PK, 磷钾混合肥料。159 days, 儒略历第159天; 162 days, 儒略历第162天。
Fig. 2 Florescence ratios of Kobresia humilis after nutrient addition. C, carbon; CK, control; K, potassium; N, nitrogen; NK, nitrogen-potassium mixed fertilizer; NP, nitrogen-phosp- horus mixed fertilizer; NPK, nitrogen-phosphorus-potassium mixed fertilizer; P, phosphorus; PK, phosphorus-potassium mixed fertilizer. 159 days, the 159th day of Julian calendar; 162 days, the 162th day of Julian calendar.
图3 养分添加后第三年麻花艽返青期和枯黄期物候比率。图注同图2。
Fig. 3 Phenological ratios of green-up date and senescence date of Gentiana straminea in the 3rd year after nutrient addition. Notes see Fig. 2.
图5 养分添加第二年垂穗披碱草和双柱头藨草的枯黄比率(平均值±标准误差)。Nutrient, 养分添加; Nutrient + Snow, 养分添加并冬季增雪。不同大、小写字母表示差异显著(p < 0.05)。
Fig. 5 Senescence ratios of Elymus nutans and Scirpus distigmaticus in the 2nd year after nutrient addition (mean ± SE). Nutrient, nutrient addition; Nutrient + Snow, nutrient addition and winter snow addition. Different upper-case and lower-case letters indicate significant difference (p < 0.05).
图6 养分添加第三年矮生嵩草6月初的开花比率。Nutrient, 养分添加; Nutrient + Snow, 养分添加并冬季增雪; Nutrient + Water, 养分添加并夏季增水; C + CK, 碳+对照; Other nutrients, 除碳、对照外的养分添加。
Fig. 6 Florescence ratios of Kobresia humilis in early June of the 3rd year after nutrient addition. Nutrient, nutrient addition; Nutrient + Snow, nutrient addition and winter snow addition; Nutrient + Water, nutrient addition and summer water addition; C + CK, carbon + control; Other nutrients, nutrient addition expect carbon and control.
物种 Species | 养分添加 Nutrient addition | ||||||||
---|---|---|---|---|---|---|---|---|---|
NPK | K | NP | N | P | PK | NK | C | Control | |
矮生嵩草 Kobresia humilis | 0.83 | 0.83 | 1.00+ | 0.77 | 0.75 | 1.00+ | 1.00+ | 0.92 | 0.75 |
垂穗披碱草 Elymus nutans | 0.58 | 0.55 | 0.31- | 0.39- | 0.67 | 0.62 | 0.50- | 0.62 | 0.75 |
双柱头藨草 Scirpus distigmaticcus | 0.46- | 1.00 | 0.50- | 0.75 | 0.63- | 0.82 | 0.89 | 0.67 | 1.00 |
麻花艽 Gentiana straminea | 0.46+ | 0.42+ | 0.17 | 0.08 | 0.50+ | 0.33 | 0.15 | 0.25 | 0.08 |
美丽凤毛菊 Saussurea superba | 0.42- | 0.58 | 0.33- | 0.73+ | 0.55 | 0.83+ | 0.69+ | 0.58 | 0.55 |
黑褐穗薹草 Carex atrofusca | 0.60 | 0.71+ | 0.75+ | 0.67 | 1.00+ | 0.20- | 0.70 | 0.62 | 0.50 |
雪白委陵菜 Potentilla nivea | 0.67- | 0.91 | 0.54- | 0.92+ | 1.00+ | 0.91 | 0.92+ | 0.67 | 0.83 |
冷地早熟禾 Poa crymophila | 0.70 | 0.67- | 0.70 | 0.70 | 0.70 | 0.83 | 0.42- | 0.62 | 0.83 |
异针茅 Stipa aliena | 0.08- | 0.36 | 0.30- | 0.33- | 0.42 | 0.46 | 0.50 | 0.58 | 0.88 |
表2 2010年5月1日(儒略历第121天)不同养分添加处理间的植物返青比率
Table 2 Green-up ratios of plant with different nutrient additions on May 1st, 2010 (the 121th day of Julian calendar)
物种 Species | 养分添加 Nutrient addition | ||||||||
---|---|---|---|---|---|---|---|---|---|
NPK | K | NP | N | P | PK | NK | C | Control | |
矮生嵩草 Kobresia humilis | 0.83 | 0.83 | 1.00+ | 0.77 | 0.75 | 1.00+ | 1.00+ | 0.92 | 0.75 |
垂穗披碱草 Elymus nutans | 0.58 | 0.55 | 0.31- | 0.39- | 0.67 | 0.62 | 0.50- | 0.62 | 0.75 |
双柱头藨草 Scirpus distigmaticcus | 0.46- | 1.00 | 0.50- | 0.75 | 0.63- | 0.82 | 0.89 | 0.67 | 1.00 |
麻花艽 Gentiana straminea | 0.46+ | 0.42+ | 0.17 | 0.08 | 0.50+ | 0.33 | 0.15 | 0.25 | 0.08 |
美丽凤毛菊 Saussurea superba | 0.42- | 0.58 | 0.33- | 0.73+ | 0.55 | 0.83+ | 0.69+ | 0.58 | 0.55 |
黑褐穗薹草 Carex atrofusca | 0.60 | 0.71+ | 0.75+ | 0.67 | 1.00+ | 0.20- | 0.70 | 0.62 | 0.50 |
雪白委陵菜 Potentilla nivea | 0.67- | 0.91 | 0.54- | 0.92+ | 1.00+ | 0.91 | 0.92+ | 0.67 | 0.83 |
冷地早熟禾 Poa crymophila | 0.70 | 0.67- | 0.70 | 0.70 | 0.70 | 0.83 | 0.42- | 0.62 | 0.83 |
异针茅 Stipa aliena | 0.08- | 0.36 | 0.30- | 0.33- | 0.42 | 0.46 | 0.50 | 0.58 | 0.88 |
图7 养分添加第二年物种的返青比率。不同小写字母表示差异显著(p < 0.05)。
Fig. 7 Green-up ratios of species in the 2nd year after nutrient addition. Different lower-case letters indicate significant difference (p < 0.05).
物种 Species | 养分添加 Nutrient addition | Control | |||||||
---|---|---|---|---|---|---|---|---|---|
NPK | K | NP | N | P | PK | NK | C | ||
矮生嵩草 Kobresia humilis | 0.93+ | 0.71 | 0.95+ | 0.83 | 0.83 | 0.82 | 0.86+ | 0.78- | 0.80 |
垂穗披碱草 Elymus nutans | 0.79 | 0.96+ | 0.87 | 0.88 | 0.85 | 0.91 | 0.89 | 0.83- | 0.91 |
双柱头藨草 Scirpus distigmaticcus | 0.89+ | 0.52 | 0.72+ | 0.62 | 0.93+ | 0.58 | 0.57 | 0.66 | 0.54 |
麻花艽 Gentiana straminea | 0.75 | 0.90+ | 0.94+ | 0.77 | 0.88+ | 0.84 | 0.87 | 0.73- | 0.84 |
美丽凤毛菊 Saussurea superba | 0.92 | 0.88 | 0.97+ | 0.95 | 0.98+ | 0.94 | 0.99+ | 0.83- | 0.89 |
黑褐穗薹草 Carex atrofusca | 0.72 | 0.89 | 0.82 | 0.90 | 0.92+ | 0.78- | 0.88 | 0.85 | 0.91 |
雪白委陵菜 Potentilla nivea | 0.83 | 0.77 | 0.93 | 0.83 | 0.81 | 0.88 | 0.94 | 0.74- | 0.96 |
异叶米口袋 Gueldenstaedtia diversifolia | 0.96 | 1.00+ | 0.89 | 0.97 | 0.96 | 0.95 | 1.00+ | 0.99+ | 0.95 |
甘青剪股颖 Agrostis hugoniana | 0.85 | 0.93 | 0.86 | 0.95+ | 0.89 | 0.95+ | 0.90 | 0.96+ | 0.86 |
异针茅 Stipa aliena | 0.80 | 0.78 | 0.73 | 0.81 | 0.71 | 0.85 | 0.68- | 0.86+ | 0.85 |
冷地早熟禾 Poa crymophila | 0.63 | 0.87+ | 0.78 | 0.80+ | 0.61 | 0.67- | 0.69 | 0.88+ | 0.70 |
表3 2010年10月22日(儒略历第295天)不同养分添加处理间植物种的枯黄比率
Table 3 Senescence ratios of plant species with different nutrient additions on Oct. 22th, 2010 (the 295th day of Julian calendar)
物种 Species | 养分添加 Nutrient addition | Control | |||||||
---|---|---|---|---|---|---|---|---|---|
NPK | K | NP | N | P | PK | NK | C | ||
矮生嵩草 Kobresia humilis | 0.93+ | 0.71 | 0.95+ | 0.83 | 0.83 | 0.82 | 0.86+ | 0.78- | 0.80 |
垂穗披碱草 Elymus nutans | 0.79 | 0.96+ | 0.87 | 0.88 | 0.85 | 0.91 | 0.89 | 0.83- | 0.91 |
双柱头藨草 Scirpus distigmaticcus | 0.89+ | 0.52 | 0.72+ | 0.62 | 0.93+ | 0.58 | 0.57 | 0.66 | 0.54 |
麻花艽 Gentiana straminea | 0.75 | 0.90+ | 0.94+ | 0.77 | 0.88+ | 0.84 | 0.87 | 0.73- | 0.84 |
美丽凤毛菊 Saussurea superba | 0.92 | 0.88 | 0.97+ | 0.95 | 0.98+ | 0.94 | 0.99+ | 0.83- | 0.89 |
黑褐穗薹草 Carex atrofusca | 0.72 | 0.89 | 0.82 | 0.90 | 0.92+ | 0.78- | 0.88 | 0.85 | 0.91 |
雪白委陵菜 Potentilla nivea | 0.83 | 0.77 | 0.93 | 0.83 | 0.81 | 0.88 | 0.94 | 0.74- | 0.96 |
异叶米口袋 Gueldenstaedtia diversifolia | 0.96 | 1.00+ | 0.89 | 0.97 | 0.96 | 0.95 | 1.00+ | 0.99+ | 0.95 |
甘青剪股颖 Agrostis hugoniana | 0.85 | 0.93 | 0.86 | 0.95+ | 0.89 | 0.95+ | 0.90 | 0.96+ | 0.86 |
异针茅 Stipa aliena | 0.80 | 0.78 | 0.73 | 0.81 | 0.71 | 0.85 | 0.68- | 0.86+ | 0.85 |
冷地早熟禾 Poa crymophila | 0.63 | 0.87+ | 0.78 | 0.80+ | 0.61 | 0.67- | 0.69 | 0.88+ | 0.70 |
图8 养分添加第二年物种枯黄比率。不同小写字母表示差异显著(p < 0.05)。
Fig. 8 Senescence ratios of species in the 2nd year after nutrient addition. Different lower-case letters indicate significant difference (p < 0.05).
[1] |
Abrams RA (1995). Monotonic or unimodal diversity-produc- tivity gradients: What does competition theory predict? Ecology, 76, 2019-2027.
DOI URL |
[2] |
Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001). Earlier plant flowering in spring as a response to global warming in the Washington, DC area. Biodiversity and Conservation, 10, 597-612.
DOI URL |
[3] |
Ackerly DD (2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164(S3), S165-S184.
DOI URL |
[4] |
Amano T, Smithers RJ, Sparks TH, Sutherland WJ (2010). A 250-year index of first flowering dates and its response to temperature changes. Proceedings of the Royal Society B: Biological Sciences, 277, 2451-2457.
DOI URL PMID |
[5] | Bazzaz FA, Grace J (1997). Plant Resource Allocation. Academic Press, San Diego, USA. |
[6] |
Bradley NL, Leopold AC, Ross J, Huffaker W (1999). Phenological changes reflect climate change in Wisconsin. Proceedings of the National Academy of Sciences of the United States of America, 96, 9701-9704.
URL PMID |
[7] | Chen XQ, Li J (2009). Relationships between Leymus chinensis phenology and meteorological factors in Inner Mongolia grasslands. Acta Ecologica Sinica, 29, 5280-5290. (in Chinese with English abstract) |
[ 陈效逑, 李倞 (2009). 内蒙古草原羊草物候与气象因子的关系. 生态学报, 29, 5280-5290.] | |
[8] |
Chmielewski FM, Rötzer T (2001). Response of tree phenology to climate change across Europe. Agriculture and Forest Meteorology, 108, 101-112.
DOI URL |
[9] |
Clark CM, Cleland EE, Collins SL, Fargione JE, Gough L, Gross KL, Pennings SC, Suding KN, Grace JB (2007). Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 10, 596-607.
URL PMID |
[10] | Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM (2012). Phenological tracking enables positive species responses to climate change. Ecology, 93, 1765-1771. |
[11] |
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22, 357-365.
URL PMID |
[12] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL PMID |
[13] | Gao FG, Han GD, Shi FL, Wang Z, Li YH, Li N, Zhang LZ (2010). Responses of reproductive phenology and photosynthetic rate of Stipa breviflora under warming and nitrogen addition. Journal of Inner Mongolia Agricultural University, 31, 104-108. (in Chinese with English abstract) |
[ 高福光, 韩国栋, 石凤翎, 王珍, 李元恒, 李娜, 张利枝 (2010). 短花针茅生殖物候和光合作用对增温和施氮的响应. 内蒙古农业大学学报, 31, 104-108.] | |
[14] |
Ge QS, Dai JH, Zheng JY, Bai J, Zhong SY, Wang HJ, Wang WC (2011). Advances in first bloom dates and increased occurrences of yearly second blooms in eastern China since the 1960s: further phenological evidence of climate warming. Ecological Research, 26, 713-723.
DOI URL |
[15] |
Grime JP (1997). Biodiversity and ecosystem function: the debate deepens. Science, 277, 1260-1261.
DOI URL |
[16] |
Hamann A (2004). Flowering and fruiting phenology of a Philippine submontane rain forest: climatic factors as proximate and ultimate causes. Journal of Ecology, 92, 24-31.
DOI URL |
[17] | Harpole WS, Tilman D (2007). Grassland species loss resulting from reduced niche dimension. Nature, 466, 791-793. |
[18] | Hulme PE (2011). Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions. New Phytologist, 189, 272-281. |
[19] | Kramer K, Leinonen I, Loustau D (2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. International Journal of Biometeorology, 44, 76-81. |
[20] | Li YH (2008). Responses of Reproductive Phenology of Inner Mongolia Typical Steppe Plants Under Climatic Change and Artificial Interference. Master degree dissertation, Gansu Agriculture University, Lanzhou. (in Chinese with English abstract) |
[ 李元恒 (2008). 内蒙古典型草原植物生殖物候对气候变化和人为干扰的响应. 硕士学位论文, 甘肃农业大学, 兰州.] | |
[21] | Ma T (2007). The Effect of Simulation Clipping and Fertilization Level on Plant Community and Function in Qinghai- Tibetan. Master degree dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract). |
[ 马涛 (2007). 青藏高原高寒草甸植物群落结构和功能对施肥和刈割干扰的响应研究. 硕士学位论文, 兰州大学, 兰州.] | |
[22] | Muhanguzi HD, Obua J, Origa HO, Vetaas OR (2003). Tree fruiting phenology in Kalinzu Forest, Uganda. African Journal of Ecology, 41, 171-178. |
[23] | Newman EI (1973). Competition and diversity in herbaceous vegetation. Nature, 244, 310-311. |
[24] | Niu KC (2008). The Response of Reproductive Trait of Component Species to Fertilization and Grazing in Qinghai-Tibetan Alpine Meadow. PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract). |
[ 牛克昌 (2008). 青藏高原高寒草甸群落主要组分种繁殖特征对施肥和放牧的响应. 博士学位论文, 兰州大学, 兰州.] | |
[25] | Niu KC, Luo YJ, Choler P, Du GZ (2008). The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 9, 485-493. |
[26] | Nomura N, Kikuzawa K (2003). Productive phenology of tropical montane forests: fertilization experiments along a moisture gradient. Ecological Research, 18, 573-586. |
[27] | Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009). Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190. |
[28] | Obeso JR (2002). The costs of reproduction in plants. New Physiologist, 155, 321-348. |
[29] | Peñuelas J, Filella I (2001). Phenology: responses to a warming world. Science, 294, 793-795. |
[30] | Piao SL, Fang JY, Zhou LM, Ciais P, Zhu B (2006). Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12, 672-685. |
[31] | Price MV, Waser NM (1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology, 79, 1261-1271. |
[32] | Rabinowitz D, Rapp JK, Sork VL, Rathcke BJ, Reese GA, Weaver JC (1981). Phenological properties of wind- and insect-pollinated prairie plants. Ecology, 62, 49-56. |
[33] | Rajaniemi TK (2003). Explaining productivity-diversity relationships in plants. Oikos, 101, 449-457. |
[34] | Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60. |
[35] |
Schaeffer SM, Evans RD (2005). Pulse additions of soil carbon and nitrogen affect soil nitrogen dynamics in an arid Colorado Plateau shrubland. Oecologia, 145, 425-433.
DOI URL PMID |
[36] | Schwartz MD (1999). Advancing to full bloom: planning phenological research for the 21st century. International Journal of Biometeorology, 42, 113-118. |
[37] |
Sherry RA, Zhou XH, Gu SL, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo YQ (2007). Divergence of reproduc- tive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202.
URL PMID |
[38] | Stanton ML, Rejmánek M, Galen C (1994). Changes in vegetation and soil fertility along a predictable snowmelt gradient in the Mosquito Range, Colorado, USA. Arctic and Alpine Research, 26, 364-374. |
[39] |
Tilman D, Lehman CL, Thomson KT (1997). Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861.
URL PMID |
[40] | Veresoglou DS, Fitter AH (1984). Spatial and temporal patterns of growth and nutrient uptake of five co-existing grasses. Journal of Ecology, 72, 259-272. |
[41] |
Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Guldberg OH, Bairlein F (2002). Ecological responses to recent climate change. Nature, 416, 389-395.
DOI URL PMID |
[42] | Wan MW, Liu XZ (1979). Phenology Observation Methods in China. Science Press, Beijing. (in Chinese) |
[ 宛敏渭, 刘秀珍 (1979). 中国物候观测方法. 科学出版社, 北京.] | |
[43] | West NE, Wein RW (1971). A plant phenological index technique. BioScience, 21, 116-117. |
[44] |
Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancount JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494-497.
DOI URL PMID |
[45] | Yang X (2007). Patterns of Flowering Phenology on Alpine Meadow in Qinghai-Tibetan Plateau and Their Response to Different Disturbances. Master degree dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract) |
[ 杨晓 (2007). 青藏高原东缘高寒草甸开花物候格局及其对不同干扰方式的响应. 硕士学位论文, 兰州大学, 兰州.] | |
[46] | Zang YM, Zhu ZH, Li YN, Wang WJ, Xi B (2009). Effects of species diversity and functional diversity on primary productivity of alpine meadow. Chinese Journal of Ecology, 28, 999-1005. (in Chinese with English abstract) |
[ 臧岳铭, 朱志红, 李英年, 王文娟, 席博 (2009). 高寒矮嵩草草甸物种多样性与功能多样性对初级生产力的影响. 生态学杂志, 28, 999-1005.] | |
[47] | Zhang F, Zhou GS, Wang YH (2008). Phenological calendar of Stipa krylovii steppe in Inner Mongolia, China and its correlation with climatic variables. Journal of Plant Ecology (Chinese Version), 32, 1312-1322. (in Chinese with English abstract) |
[ 张峰, 周广胜, 王玉辉 (2008). 内蒙古克氏针茅草原植物物候及其与气候因子关系. 植物生态学报, 32, 1312-1322.] | |
[48] | Zhang YQ, Zhou XM, Wang QJ, Zhang YS (1994). Numerical analysis of phenological characteristics of main plants in Potentilla fruticosa shrub. In: Jiang S, Chen CD eds. Vegetation Ecology Research. Science Press, Beijing. 289-296. (in Chinese) |
[ 张堰青, 周兴民, 王启基, 张耀生 (1994). 金露梅灌丛主要植物种物候特征的数值分析. 见: 姜恕, 陈昌笃编. 植被生态学研究. 科学出版社, 北京. 289-296.] | |
[49] | Zhao XQ, Cao GM, Li YN, Xu SX, Cui XY, Zhou HK (2009). Alpine Meadow Ecosystem and Global Change. Science Press, Beijing. (in Chinese) |
[ 赵新全, 曹广民, 李英年, 徐世晓, 崔晓勇, 周华坤 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京.] | |
[50] | Zhou HK, Zhou L, Zhao XQ, Liu W, Li YN, Yan ZL, Zhao XX (2002). A quantitative study on the plant population phenology in Kobresia humilis meadow. Acta Agrestia Sinica, 10, 279-286. (in Chinese with English abstract) |
[ 周华坤, 周立, 赵新全, 刘伟, 李英年, 严作良, 赵旭霞 (2002). 矮嵩草草甸植物种群物候学定量研究. 草地学报, 10, 279-286.] |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[4] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[5] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[6] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[9] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[10] | 冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响[J]. 植物生态学报, 2023, 47(7): 932-942. |
[11] | 胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响[J]. 植物生态学报, 2023, 47(6): 847-855. |
[12] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[13] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[14] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[15] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19