植物生态学报 ›› 2014, Vol. 38 ›› Issue (3): 262-269.DOI: 10.3724/SP.J.1258.2014.00023
收稿日期:
2013-09-10
接受日期:
2013-11-29
出版日期:
2014-09-10
发布日期:
2014-02-27
通讯作者:
马松梅
作者简介:
* E-mail: shzmsm@126.com基金资助:
MA Song-Mei1,*(), NIE Ying-Bin2, GENG Qing-Long3, WANG Rong-Xue4
Received:
2013-09-10
Accepted:
2013-11-29
Online:
2014-09-10
Published:
2014-02-27
Contact:
MA Song-Mei
摘要:
为模拟、预测气候变化对孑遗、濒危植物蒙古扁桃(Amygdalus mongolica)潜在分布的影响, 利用最大熵(MAXENT)模型模拟、预测、对比、分析、揭示蒙古扁桃在最大冰期(CCSM及MIROC模型)、历史气候(1961-1990年)及未来气候(2020年、2050年和2080年, 政府间气候变化专门委员会排放情景特别报告的A2A情景)条件下的适宜分布范围和空间格局的变化。结果表明: (1)蒙古扁桃在历史气候条件下的潜在分布区集中在蒙古的南戈壁省及东戈壁省, 我国内蒙古巴彦淖尔市、阿拉善左旗、鄂尔多斯市、锡林郭勒盟西部, 河西走廊中部及东部, 宁夏北部及陕西北部, 以及河北北部的部分地区; (2)与历史气候条件下的潜在分布相比, 蒙古扁桃在最大冰期CCSM气候情景下的分布经历了明显的、大范围的向南迁移和范围缩小; (3)未来A2A气候情景下, 其潜在分布范围表现出在2020年明显扩大, 在2050年减小, 到2080年又略有增大的趋势。分布格局表现出不断向我国河北及内蒙古东部, 蒙古东部、北部及西部大幅度扩散、迁移的趋势。
马松梅, 聂迎彬, 耿庆龙, 王荣学. 气候变化对蒙古扁桃适宜分布范围和空间格局的影响. 植物生态学报, 2014, 38(3): 262-269. DOI: 10.3724/SP.J.1258.2014.00023
MA Song-Mei, NIE Ying-Bin, GENG Qing-Long, WANG Rong-Xue. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica . Chinese Journal of Plant Ecology, 2014, 38(3): 262-269. DOI: 10.3724/SP.J.1258.2014.00023
地区 Region | 居群编号及地点 Number and location of populations | 纬度 Latitude | 经度 Longitude | 海拔 Altitude (m) | 生境 Habitat |
---|---|---|---|---|---|
内蒙古 Nei Mongol | 1 阿拉善左旗特莫乌拉嘎查 Temowula Gazha of Alxa Zuoqi | 37°49′ N | 104°56′ E | 1 465 | 沙丘 Sand dune |
2 阿拉善左旗贺兰山 Helan Mountain of Alxa Zuoqi | 38°51′ N | 105°50′ E | 2 102 | 砾石戈壁 Gravel gobi | |
3 阿拉善左旗苏力图嘎查 Su Litu Gazha of Alxa Zuoqi | 39°55′ N | 105°13′ E | 1 421 | 沙丘或砾石沙丘 Sand dunes or gravel dune | |
4 阿拉善左旗图克木嘎查 Tukemu Gazha of Alxa Zuoqi | 40°24′ N | 105°43′ E | 1 388 | 沙丘或砾石沙丘 Sand dunes or gravel dune | |
5 乌素图苏海图 Suhaitu, Wusu Tu | 39°32′ N | 106°35′ E | 1 280 | 小砾石山坡 Small gravel slope | |
6 乌素图大麦力沟 Damaili Furrow, Wusu Tu | 39°23′ N | 106°38′ E | 1 382 | 大砾石山坡 Large gravel slope | |
7 乌拉特前旗乌拉山 Ul Mountain, Urad Qianqi | 40°44′ N | 109°20′ E | 1 610 | 大砾石山坡 Large gravel slope | |
8 乌拉特中旗乌加禾镇 Wujiahe Town, Urad Zhongqi | 41°18′ N | 107°35′ E | 1 107 | 大砾石山坡 Large gravel slope | |
9 乌拉特后旗大坝口 Dam Mouth, Urad Houqi | 41°04′ N | 107°01′ E | 1 067 | 大砾石山坡 Large gravel slope | |
10 包头市大青山 Daqing Mountain, Baotou | 40°43′ N | 109°54′ E | 1 195 | 小砾石山坡 Small gravel slope | |
甘肃 Gansu | 11 祁连山国家级自然保护区 Qilianshan National Nature Reserve | 38°09′ N | 101°50′ E | 2 498 | 大砾石山坡 Large gravel slope |
12 张掖市龙首山 Longshou Mountain, Zhangye | 38°47′ N | 101°11′ E | 2 203 | 大砾石山坡 Large gravel slope |
表1 野外调查的蒙古扁桃12个居群的基本情况
Table 1 Basic information for the 12 Amygdalus mongolica populations investigated in the field
地区 Region | 居群编号及地点 Number and location of populations | 纬度 Latitude | 经度 Longitude | 海拔 Altitude (m) | 生境 Habitat |
---|---|---|---|---|---|
内蒙古 Nei Mongol | 1 阿拉善左旗特莫乌拉嘎查 Temowula Gazha of Alxa Zuoqi | 37°49′ N | 104°56′ E | 1 465 | 沙丘 Sand dune |
2 阿拉善左旗贺兰山 Helan Mountain of Alxa Zuoqi | 38°51′ N | 105°50′ E | 2 102 | 砾石戈壁 Gravel gobi | |
3 阿拉善左旗苏力图嘎查 Su Litu Gazha of Alxa Zuoqi | 39°55′ N | 105°13′ E | 1 421 | 沙丘或砾石沙丘 Sand dunes or gravel dune | |
4 阿拉善左旗图克木嘎查 Tukemu Gazha of Alxa Zuoqi | 40°24′ N | 105°43′ E | 1 388 | 沙丘或砾石沙丘 Sand dunes or gravel dune | |
5 乌素图苏海图 Suhaitu, Wusu Tu | 39°32′ N | 106°35′ E | 1 280 | 小砾石山坡 Small gravel slope | |
6 乌素图大麦力沟 Damaili Furrow, Wusu Tu | 39°23′ N | 106°38′ E | 1 382 | 大砾石山坡 Large gravel slope | |
7 乌拉特前旗乌拉山 Ul Mountain, Urad Qianqi | 40°44′ N | 109°20′ E | 1 610 | 大砾石山坡 Large gravel slope | |
8 乌拉特中旗乌加禾镇 Wujiahe Town, Urad Zhongqi | 41°18′ N | 107°35′ E | 1 107 | 大砾石山坡 Large gravel slope | |
9 乌拉特后旗大坝口 Dam Mouth, Urad Houqi | 41°04′ N | 107°01′ E | 1 067 | 大砾石山坡 Large gravel slope | |
10 包头市大青山 Daqing Mountain, Baotou | 40°43′ N | 109°54′ E | 1 195 | 小砾石山坡 Small gravel slope | |
甘肃 Gansu | 11 祁连山国家级自然保护区 Qilianshan National Nature Reserve | 38°09′ N | 101°50′ E | 2 498 | 大砾石山坡 Large gravel slope |
12 张掖市龙首山 Longshou Mountain, Zhangye | 38°47′ N | 101°11′ E | 2 203 | 大砾石山坡 Large gravel slope |
图1 蒙古扁桃在最大冰期、历史(1961-1990年)气候及未来气候情景下的平均发生概率及标准偏差。C中的白色圆点表示野外实地调查的居群分布点。居群编号同表1。A, B, 最大冰期(基于社区大气气候系统模型)。C, D, 历史(1961-1990年)气候。E, F, 2020年。G, H, 2050年。I, J, 2080年。
Fig. 1 Probability of average occurrence and standard deviation of Amygdalus mongolica during the Last Glacial Maximum and under historical (1961-1990) and future climatic conditions. The white dots in C show the field locations for investigation of A. mongolica populations. Population numbers refer to Table 1. A, B, the Last Glacial Maximum based on Community Climate System Model. C, D, historical (1961-1990) climate. E, F, in 2020. G, H, in 2050. I, J, in 2080.
气候情景 Climate scenario | 最小存在阈值 Lowest predicted threshold value | 预测成功的点个数 No. of points with successful predictions | p值 p-value |
---|---|---|---|
最大冰期(CCSM模型) The Last Glacial Maximum (CCSM model) | 4 | 17 | 0.011 2 |
最大冰期(MIROC模型) The Last Glacial Maximum (MIROC model) | 4 | 17 | 0.394 1 |
1961-1990年平均气候 Average climate during 1961-1990 | 8 | 18 | 0.011 2 |
2020年A2A情景 A2A scenario in 2020 | 9 | 18 | 0.020 8 |
2050年A2A情景 A2A scenario in 2050 | 3 | 18 | 0.077 2 |
2080年A2A情景 A2A scenario in 2080 | 3 | 18 | 0.040 9 |
表2 最大熵模型(MAXENT)基于留一法预测的结果
Table 2 Predictions with Maximum Entropy (MAXENT) by using the leave one out
气候情景 Climate scenario | 最小存在阈值 Lowest predicted threshold value | 预测成功的点个数 No. of points with successful predictions | p值 p-value |
---|---|---|---|
最大冰期(CCSM模型) The Last Glacial Maximum (CCSM model) | 4 | 17 | 0.011 2 |
最大冰期(MIROC模型) The Last Glacial Maximum (MIROC model) | 4 | 17 | 0.394 1 |
1961-1990年平均气候 Average climate during 1961-1990 | 8 | 18 | 0.011 2 |
2020年A2A情景 A2A scenario in 2020 | 9 | 18 | 0.020 8 |
2050年A2A情景 A2A scenario in 2050 | 3 | 18 | 0.077 2 |
2080年A2A情景 A2A scenario in 2080 | 3 | 18 | 0.040 9 |
气候情景 Climate scenario | 百分比 Percentage (%) |
---|---|
最大冰期(CCSM模型)与历史气候对比 The Last Glacial Maximum (CCSM model) vs. historical climate | 51.93 |
最大冰期(MIROC模型)与历史气候对比 The Last Glacial Maximum (MIROC model) vs. historical climate | 29.41 |
2020 (A2A)与历史气候对比 2020 (A2A) vs. historical climate | 176.00 |
2050 (A2A)与历史气候对比 2050 (A2A) vs. historical climate | 137.00 |
2080 (A2A)与历史气候对比 2080 (A2A) vs. historical climate | 142.00 |
表3 最大冰期和未来气候条件下蒙古扁桃的潜在分布分别与其在历史(1961-1990年)气候条件下的潜在分布相除得到的百分比
Table 3 Percentage of area maintained as compared to the historical (1961-1990) potential distribution of Amygdalus mongolica according to modelled distribution ranges based on the Last Glacial Maximum and future climatic conditions
气候情景 Climate scenario | 百分比 Percentage (%) |
---|---|
最大冰期(CCSM模型)与历史气候对比 The Last Glacial Maximum (CCSM model) vs. historical climate | 51.93 |
最大冰期(MIROC模型)与历史气候对比 The Last Glacial Maximum (MIROC model) vs. historical climate | 29.41 |
2020 (A2A)与历史气候对比 2020 (A2A) vs. historical climate | 176.00 |
2050 (A2A)与历史气候对比 2050 (A2A) vs. historical climate | 137.00 |
2080 (A2A)与历史气候对比 2080 (A2A) vs. historical climate | 142.00 |
[1] | Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schönswetter P, Lagaye C, Taberlet P, Brochmann C (2012). Genetic consequences of climate change for northern plants. Proceedings of the Royal Society B: Biological Sciences, 279, 2042-2051. |
[2] | Anderson RP, Lew D, Peterson AT (2003). Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modeling, 162, 211-232. |
[3] | Bálint M, Domisch S, Engelhardt C, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011). Cryptic biodiversity loss linked to global climate change. Nature Climate Change, 1, 313-318. |
[4] | Beatty GE, Provan J (2011). Comparative phylogeography of two related plant species with overlapping ranges in Europe, and the potential effects of climate change on their intraspecific genetic diversity. BMC Evolutionary Biology, 11, 29. |
[5] | Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377. |
[6] | Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011). Impacts of climate change on the worlds most exceptional ecoregions. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 108, 2306-2311. |
[7] | Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007). Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum―Part 1, experiments and large-scale features. Climate of the Past, 3, 261-277. |
[8] | Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006). The Community Climate System Model version 3 (CCSM3). Journal of Climate, 19, 2122-2143. |
[9] | Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011). Beyond predictions: biodiversity conservation in a changing climate. Science, 332, 53-58. |
[10] | Désamoré A, Laenen B, Stech M, Papp B, Hedenäs L, Mateo RG, Vanderpoorten A (2012). How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future. Global Change Biology, 18, 2915-2924. |
[11] | Espíndola A, Pellissier L, Maiorano L, Hordijk W, Guisan A, Alvarez N (2012). Predicting present and future intra- specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 15, 649-657. |
[12] | Fang HT, Seqinbate (2007). Blossom character and insect pollination of Amygdalus mongolica Maxim. Chinese Journal of Ecology, 26, 177-181. (in Chinese with English abstract) |
[ 方海涛, 斯琴巴特 (2007). 蒙古扁桃的花部综合特征与虫媒传粉. 生态学杂志, 26, 177-181.] | |
[13] | Fielding AH, Bell JF (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49. |
[14] | Fu LG (1992). China Plant Red Data Book Science Press, Beijing. (in Chinese) |
[ 傅立国 (1992). 中国植物红皮书. 科学出版社, 北京.] | |
[15] | Ge XJ, Hsu TW, Hung KH, Lin CJ, Huang CC, Chiang YC, Chiang TY (2012). Inferring multiple refugia and phylogeographical patterns in Pinus massoniana based on nucleotide sequence variation and DNA fingerprinting. PLoS ONE, 7(8), e43717. |
[16] | Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX, Peng SZ, Wei JJ, Yuan BY, Liu TS (2002). Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159-163. |
[17] | Hasumi H, Emori S (2004). K-1 Coupled GCM (MIROC) Description. Center for Climate System Research, University of Tokyo, Tokyo. |
[18] | Hewitt GM (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 359, 183-195. |
[19] | Ji ZL, Qian AD (1981). The investigation of geographic dis-tribution of Amygdalus pedunculata and Amygdalus mongolica. China Fruits, (2), 38-40. (in Chinese with English abstract) |
[ 姬钟亮, 钱安东 (1981). 长柄扁桃和蒙古扁桃在我国自然分布区的调查. 中国果树, (2), 38-40.] | |
[20] | Leadley P, Pereira HM, Alkemade R, Fernandez-Manjarrés JF, Proença V, Scharlemann JPW, Walpole MJ (2010) Biodiversity Scenarios: Projections of 21st Century Change in Biodiversity and Associated Ecosystem Services. Secretariat of the Convention on Biological Diversity, Montreal. |
[21] |
Lioubimtseva E, Henebry GM (2009). Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. Journal of Arid Environments, 73, 963-977.
DOI URL |
[22] | Liu YX (1995). A study on origin and formation of the Chinese desert floras. Acta Phytotaxonomica Sinica, 33, 131-143. (in Chinese with English abstract) |
[ 刘媖心 (1995). 试论我国沙漠地区植物区系的发生与形成. 植物分类学报, 33, 131-143.] | |
[23] | Ma SM, Zhang ML, Ni J, Xi C (2012). Modelling the geographic distributions of endemic genera in the eastern Central Asian desert. Nordic Journal of Botany, 30, 372-384. |
[24] | McCarthy JJ (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York. |
[25] | Parmesan C, Duarte CM, Poloczanska E, Richardson AJ, Singer MC (2011). Overstretching attribution. Nature Climate Change, 1, 2-4. |
[26] | Petit RJ, Hu FS, Dick CW (2008). Forests of the past: a window to future changes. Science, 320, 1450-1452. |
[27] | Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guéenette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumalia UR, Waopole M (2010). Scenarios for global biodiversity in the 21st century. Science, 330, 1496-1501. |
[28] | Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353-357. |
[29] | Salamin N, Wüest RO, Lavergne S, Thuiller W, Pearman PB (2010). Assessing rapid evolution in a changing environment. Trends in Ecology & Evolution, 25, 692-698. |
[30] | Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America of Sciences of the United States of America, 102, 8245-8250. |
[31] | Yan S, Mu GJ, Xu YQ (2000). Quaternary environmental evolution of the Lop Nur Region, NW China. Acta Micropalaeontologica Sinica, 17, 165-169. (in Chinese with English abstract) |
[ 阎顺, 穆桂金, 许英勤 (2000). 罗布泊地区第四纪环境演化. 微体古生物学报, 17, 165-169.] | |
[32] | Yu DJ (1979). Taxonomy of Fruit Trees of China Agricultural Press, Beijing. 25-81. (in Chinese) |
[ 俞德浚 (1979). 中国果树分类学. 业出版社, 北京. 25-81.] | |
[33] | Zeng B, Li J (2009). Identification of genetic relationship of Amygdalus plants by SSR. , Xinjiang Agricultural Sciences, 46, 18-22. (in Chinese with English abstract) |
[ 曾斌, 李疆 (2009). 扁桃属植物种质资源鉴定的SSR分析研究. 新疆农业科学, 46, 18-22.] | |
[34] | Zhao YZ (1995). Study on floristic geographical distribution of Amygdalus mongolica. Acta Scientiarum Naturalium Universitatis Neimongol (Natural Science), 26, 713-715. (in Chinese with English abstract) |
[ 赵一之 (1995). 蒙古扁桃的植物区系地理分布研究. 内蒙古大学学报(自然科学版), 26, 713-715.] |
[1] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[2] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[3] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[4] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[5] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[6] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度 敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[7] | 周亮, 杨君珑, 杨虎, 窦建德, 黄维, 李小伟. 宁夏蒙古扁桃群落特征与分类[J]. 植物生态学报, 2022, 46(2): 243-248. |
[8] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[9] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[10] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[11] | 方欧娅, 张永, 张启, 贾恒锋. 黄河上游甘蒙柽柳生长对极端旱涝的响应[J]. 植物生态学报, 2021, 45(6): 641-649. |
[12] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[13] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[14] | 白娥, 薛冰. 土地利用与土地覆盖变化对生态系统的影响[J]. 植物生态学报, 2020, 44(5): 543-552. |
[15] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19