植物生态学报 ›› 2014, Vol. 38 ›› Issue (8): 888-895.DOI: 10.3724/SP.J.1258.2014.00083
收稿日期:
2014-04-21
接受日期:
2014-06-25
出版日期:
2014-04-21
发布日期:
2014-08-18
通讯作者:
杜建会
作者简介:
*E-mail: dujh1982@hotmail.com基金资助:
DU Jian-Hui*(), LIU An-Long, DONG Yu-Xiang, HU Mian-You, LIANG Jie, LI Wei
Received:
2014-04-21
Accepted:
2014-06-25
Online:
2014-04-21
Published:
2014-08-18
Contact:
DU Jian-Hui
摘要:
选择华南海岸典型沙地, 采用全挖法, 对4种典型沙生植物木麻黄(Casuarina equisetifolia)、厚藤(Ipomoea pes-caprae)、老鼠艻(Spinifex littoreus)和狗牙根(Cynodon dactylon)的根系构型进行了研究。结果表明: 1)狗牙根和老鼠艻的根系总体分支率显著高于木麻黄, 厚藤最小, 说明大部分草本植物在生长过程中通过增加根系分支率, 提高物质传输效率, 除木麻黄外, 其他3个物种枝系均平卧伸展, 易于受到沙埋生出不定根, 进一步提高其物质传输效率; 2) 4种沙生植物根系平均连接长度最大的为木麻黄, 平均连接长度为19.25 cm, 且相对其他3个物种传导根所占的比例最大, 说明木麻黄通过增加平均连接长度以减少根系内部对土壤资源的竞争, 并提高传导根的比例, 以增加资源传输效率; 3) 4种沙生植物根系构型均倾向于叉状分支, 其中草本植物的根系构型更为接近, 说明草本植物受到的资源胁迫相对较小, 有利于在海岸沙地恢复中快速定居; 与内陆地区沙生植物相比, 海岸沙生植物在土壤资源的获取及空间拓展方面表现出显著的差异, 反映出不同生境条件下物种对生境胁迫的适应策略。因此, 海岸沙地前缘植被恢复应以草本植物为主, 尤其是具有不定根的物种, 乔木则不适合。
杜建会, 刘安隆, 董玉祥, 胡绵友, 梁杰, 李薇. 华南海岸典型沙生植物根系构型特征. 植物生态学报, 2014, 38(8): 888-895. DOI: 10.3724/SP.J.1258.2014.00083
DU Jian-Hui, LIU An-Long, DONG Yu-Xiang, HU Mian-You, LIANG Jie, LI Wei. Architectural characteristics of roots in typical coastal psammophytes of South China. Chinese Journal of Plant Ecology, 2014, 38(8): 888-895. DOI: 10.3724/SP.J.1258.2014.00083
物种 Species | Rb | R1/R2 | R2/R3 | R3/R4 | R4/R5 |
---|---|---|---|---|---|
木麻黄 Casuarina equisetifolia | 3.27 ± 0.26a | 4.27 ± 1.71a | 3.09 ± 1.06a | 4.07 ± 0.40a | 2.08 ± 0.62a |
厚藤 Ipomoea pes-caprae | 2.98 ± 0.45a | 4.44 ± 3.87a | 4.64 ± 2.10a | 2.75 ± 0.35b | 2.50 ± 2.12a |
老鼠艻 Spinifex littoreus | 3.67 ± 1.11b | 5.25 ± 2.11a | 1.67 ± 0.01b | 1.50 ± 0.02b | 2.00 ± 0.01a |
狗牙根 Cynodon dactylon | 28.98 ± 24.62c | 40.30 ± 18.81b | 2.00 ± 0.03b | 2.00 ± 0.02b | - |
表1 4种海岸沙生植物根系总分支率(Rb)和逐级分支率(Ri/Ri+1) (平均值±标准误差)
Table 1 The total root bifurcation ratio (Rb) and stepwise root bifurcation ratio (Ri/Ri+1) of four coastal psammophytes (mean ± SE)
物种 Species | Rb | R1/R2 | R2/R3 | R3/R4 | R4/R5 |
---|---|---|---|---|---|
木麻黄 Casuarina equisetifolia | 3.27 ± 0.26a | 4.27 ± 1.71a | 3.09 ± 1.06a | 4.07 ± 0.40a | 2.08 ± 0.62a |
厚藤 Ipomoea pes-caprae | 2.98 ± 0.45a | 4.44 ± 3.87a | 4.64 ± 2.10a | 2.75 ± 0.35b | 2.50 ± 2.12a |
老鼠艻 Spinifex littoreus | 3.67 ± 1.11b | 5.25 ± 2.11a | 1.67 ± 0.01b | 1.50 ± 0.02b | 2.00 ± 0.01a |
狗牙根 Cynodon dactylon | 28.98 ± 24.62c | 40.30 ± 18.81b | 2.00 ± 0.03b | 2.00 ± 0.02b | - |
图1 不同沙生植物根系连接长度(A)和直径(B)(平均值±标准误差)。不同的小写字母表示不同种沙生植物之间差异显著(p < 0.01)。
Fig. 1 Root link length (A) and root diameter (B) of different psammophytes (mean ± SE). Different lowercase letters indicate significant differences among different psammophytes (p < 0.01).
物种 Species | 生活型 Life form | 拓扑指数 Topological index |
---|---|---|
木麻黄 Casuarina equisetifolia | 乔木 Tree | 0.67 ± 0.06a |
厚藤 Ipomoea pes-caprae | 草本 Herb | 0.63 ± 0.14a |
老鼠艻 Spinifex littoreus | 草本 Herb | 0.61 ± 0.07a |
狗牙根 Cynodon dactylon | 草本 Herb | 0.57 ± 0.01a |
表2 4种海岸沙生植物根系拓扑结构参数(平均值±标准误差)
Table 2 The parameters of root topological structures in four coastal psammophytes (mean ± SE)
物种 Species | 生活型 Life form | 拓扑指数 Topological index |
---|---|---|
木麻黄 Casuarina equisetifolia | 乔木 Tree | 0.67 ± 0.06a |
厚藤 Ipomoea pes-caprae | 草本 Herb | 0.63 ± 0.14a |
老鼠艻 Spinifex littoreus | 草本 Herb | 0.61 ± 0.07a |
狗牙根 Cynodon dactylon | 草本 Herb | 0.57 ± 0.01a |
物种 Species | Rb | R1/R2 | R2/R3 | R3/R4 | R4/R5 | 文献来源 References |
---|---|---|---|---|---|---|
木麻黄 Casuarina equisetifolia | 3.27 ± 0.26 | 4.27 ± 1.71 | 3.09 ± 1.06 | 4.07 ± 0.40 | 2.08 ± 0.62 | 本文 This paper |
厚藤 Ipomoea pes-caprae | 2.98 ± 0.45 | 4.44 ± 3.87 | 4.64 ± 2.10 | 2.75 ± 0.35 | 2.50 ± 2.12 | 本文 This paper |
老鼠艻 Spinifex littoreus | 3.67 ± 1.11 | 5.25 ± 2.11 | 1.67 ± 0.01 | 1.50 ± 0.02 | 2.00 ± 0.01 | 本文 This paper |
狗牙根 Cynodon dactylon | 28.98 ± 24.62 | 40.3 ± 18.81 | 2.00 ± 0.03 | 2.00 ± 0.02 | - | 本文 This paper |
红砂 Reaumuria songarica | 2.29 ± 0.33 | 1.28 ± 0.08 | 1.58 ± 0.14 | 1.14 ± 0.08 | - | Shan et al., 2013 |
白刺 Nitraria tangutorum | 2.42 ± 0.17 | 2.78 ± 0.18 | 3.51 ± 0.65 | 1.30 ± 0.10 | - | Shan et al., 2013 |
红砂 Reaumuria songarica | 2.69 ± 018 | 1.24 ± 0.06 | 1.42 ± 0.16 | 2.12 ± 0.94 | - | Shan et al., 2012 |
红砂 Reaumuria songarica | 2.17 ± 0.12 | 1.24 ± 0.04 | 1.80 ± 0.20 | - | - | Shan et al., 2012 |
多枝柽柳 Tamarix ramosissima | 3.23 ± 0.08 | 5.04 ± 0.57 | 3.19 ± 0.19 | 3.00 ± 0.13 | 2.78 ± 0.26 | Guo et al., 2014 |
梭梭 Haloxylon ammodendron | 3.72 ± 0.09 | 8.83 ± 1.48 | 3.15 ± 0.14 | 3.46 ± 0.29 | 2.95 ± 043 | Guo et al., 2014 |
新疆杨 Populus alba var. pyramidalis | 8.20 ± 0.13 | 11.10 ± 0.74 | 11.20 ± 0.41 | 11.82 ± 0.26 | 2.23 ± 0.08 | Guo et al., 2014 |
表3 不同沙生植物根系构型特征(平均值±标准误差)
Table 3 Root architectural characteristics in different psammophytes (mean ± SE)
物种 Species | Rb | R1/R2 | R2/R3 | R3/R4 | R4/R5 | 文献来源 References |
---|---|---|---|---|---|---|
木麻黄 Casuarina equisetifolia | 3.27 ± 0.26 | 4.27 ± 1.71 | 3.09 ± 1.06 | 4.07 ± 0.40 | 2.08 ± 0.62 | 本文 This paper |
厚藤 Ipomoea pes-caprae | 2.98 ± 0.45 | 4.44 ± 3.87 | 4.64 ± 2.10 | 2.75 ± 0.35 | 2.50 ± 2.12 | 本文 This paper |
老鼠艻 Spinifex littoreus | 3.67 ± 1.11 | 5.25 ± 2.11 | 1.67 ± 0.01 | 1.50 ± 0.02 | 2.00 ± 0.01 | 本文 This paper |
狗牙根 Cynodon dactylon | 28.98 ± 24.62 | 40.3 ± 18.81 | 2.00 ± 0.03 | 2.00 ± 0.02 | - | 本文 This paper |
红砂 Reaumuria songarica | 2.29 ± 0.33 | 1.28 ± 0.08 | 1.58 ± 0.14 | 1.14 ± 0.08 | - | Shan et al., 2013 |
白刺 Nitraria tangutorum | 2.42 ± 0.17 | 2.78 ± 0.18 | 3.51 ± 0.65 | 1.30 ± 0.10 | - | Shan et al., 2013 |
红砂 Reaumuria songarica | 2.69 ± 018 | 1.24 ± 0.06 | 1.42 ± 0.16 | 2.12 ± 0.94 | - | Shan et al., 2012 |
红砂 Reaumuria songarica | 2.17 ± 0.12 | 1.24 ± 0.04 | 1.80 ± 0.20 | - | - | Shan et al., 2012 |
多枝柽柳 Tamarix ramosissima | 3.23 ± 0.08 | 5.04 ± 0.57 | 3.19 ± 0.19 | 3.00 ± 0.13 | 2.78 ± 0.26 | Guo et al., 2014 |
梭梭 Haloxylon ammodendron | 3.72 ± 0.09 | 8.83 ± 1.48 | 3.15 ± 0.14 | 3.46 ± 0.29 | 2.95 ± 043 | Guo et al., 2014 |
新疆杨 Populus alba var. pyramidalis | 8.20 ± 0.13 | 11.10 ± 0.74 | 11.20 ± 0.41 | 11.82 ± 0.26 | 2.23 ± 0.08 | Guo et al., 2014 |
物种 Species | 拓扑指数 Topological index | 生境 Habitat | 参考文献 References |
---|---|---|---|
木麻黄 Casuarina equisetifolia | 0.67 ± 0.06 | 滨海沙地 Coastal beach | 本文 This paper |
厚藤 Ipomoea pes-carae | 0.63 ± 0.14 | 滨海沙地 Coastal beach | 本文 This paper |
老鼠艻 Spinifex littoreus | 0.61 ± 0.07 | 滨海沙地 Coastal beach | 本文 This paper |
狗牙根 Cynodon dactylon | 0.57 ± 0.01 | 滨海沙地 Coastal beach | 本文 This paper |
红砂 Reaumuria songarica | 0.69 ± 0.07 | 沙质荒漠 Sandy desert | |
白刺 Nitraria tangutorum | 0.57 ± 0.02 | 沙质荒漠 Sandy desert | |
红砂 Reaumuria songarica | 0.73 ± 0.05 | 砾质戈壁 Gravel desert | |
红砂 Reaumuria songarica | 0.63 ± 0.04 | 黄土峁 Loess hill | |
沙生柽柳 Tamarix taklamakanensis | 0.659 | 沙漠腹地 Sandy desert | |
罗布麻 Apocynum venetum | 0.829 | 沙漠腹地 Sandy desert | |
塔里木沙拐枣 Calligonum roborovskii | 0.857 | 沙漠腹地 Sandy desert | |
多枝柽柳 Tamarix ramosissima | 0.84 ± 0.01 | 农田外围 Farmland nearby | |
梭梭 Haloxylon ammodendron | 0.90 ± 0.01 | 农田外围 Farmland nearby | |
新疆杨 Populus alba var. pyramidalis | 0.49 ± 0.01 | 农田外围 Farmland nearby |
表4 不同沙生植物根系拓扑结构参数(平均值±标准误差)
Table 4 The parameters of root topological structures of different psammophytes (mean ± SE)
物种 Species | 拓扑指数 Topological index | 生境 Habitat | 参考文献 References |
---|---|---|---|
木麻黄 Casuarina equisetifolia | 0.67 ± 0.06 | 滨海沙地 Coastal beach | 本文 This paper |
厚藤 Ipomoea pes-carae | 0.63 ± 0.14 | 滨海沙地 Coastal beach | 本文 This paper |
老鼠艻 Spinifex littoreus | 0.61 ± 0.07 | 滨海沙地 Coastal beach | 本文 This paper |
狗牙根 Cynodon dactylon | 0.57 ± 0.01 | 滨海沙地 Coastal beach | 本文 This paper |
红砂 Reaumuria songarica | 0.69 ± 0.07 | 沙质荒漠 Sandy desert | |
白刺 Nitraria tangutorum | 0.57 ± 0.02 | 沙质荒漠 Sandy desert | |
红砂 Reaumuria songarica | 0.73 ± 0.05 | 砾质戈壁 Gravel desert | |
红砂 Reaumuria songarica | 0.63 ± 0.04 | 黄土峁 Loess hill | |
沙生柽柳 Tamarix taklamakanensis | 0.659 | 沙漠腹地 Sandy desert | |
罗布麻 Apocynum venetum | 0.829 | 沙漠腹地 Sandy desert | |
塔里木沙拐枣 Calligonum roborovskii | 0.857 | 沙漠腹地 Sandy desert | |
多枝柽柳 Tamarix ramosissima | 0.84 ± 0.01 | 农田外围 Farmland nearby | |
梭梭 Haloxylon ammodendron | 0.90 ± 0.01 | 农田外围 Farmland nearby | |
新疆杨 Populus alba var. pyramidalis | 0.49 ± 0.01 | 农田外围 Farmland nearby |
[1] |
Arredondo JT, Johnson DA (1998). Clipping effects on root architecture and morphology of 3 range grasses. Journal of Range Management, 51, 207-214.
DOI URL |
[2] |
Bouma TJ, Nielsen KL, van Hal J, Koutstaal B (2001). Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 15, 360-369.
DOI URL |
[3] |
Du JH, Yan P, Dong YX (2011). Precipitation characteristics and its impact on vegetation restoration in Minqin County, Gansu Province, northwest China. International Journal of Climatology, 31, 1153-1165.
DOI URL |
[4] | Fang SQ, Clark R, Liao H (2012). 3D quantification of plant root architecture in situ. In: Mancuso S ed. Measuring Roots. Springer-Verlag, Berlin. 135-148. |
[5] | Fitter AH (1986). The topology and geometry of plant root systems: influence of watering rate on root system topology in Trifolium pratense. Annals of Botany, 58, 91-101. |
[6] | Fitter AH, Stickland TR (1991). Architectural analysis of plant root systems. 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytologist, 118, 383-389. |
[7] | Fitter AH, Stickland TR (1992). Architectural analysis of plant root systems. III. Studies on plants under field conditions. New Phytologist, 121, 243-248. |
[8] | Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991). Architectural analysis of plant root systems. 1. Architectural correlates of exploitation efficiency. New Phytologist, 118, 375-382. |
[9] | Guo JH, Zeng FJ, Li CJ, Zhang B (2014). Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert. Chinese Journal of Plant Ecology, 38, 36-44. (in Chinese with English abstracts) |
[ 郭京衡, 曾凡江, 李尝君, 张波 (2014). 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略. 植物生态学报, 38, 36-44.] | |
[10] | Gwenzi W, Veneklaas EJ, Holmes KW, Bleby TM, Phillips IR, Hinz C (2011). Spatial analysis of fine root distribution on a recently constructed ecosystem in a water-limited environment. Plant and Soil, 348, 471-489. |
[11] | He WM (2000). Distribution characteristics of root area of Sabina vulgaris under different habitats. Scientia Silvae Sinicae, 36(5), 17-21. (in Chinese with English abstracts) |
[ 何维明 (2000). 不同生境中沙地柏根面积分布特征. 林业科学, 36(5), 17-21.] | |
[12] | Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009). Plant root growth, architecture and function. Plant and Soil, 321, 153-187. |
[13] | Hu HJ, Zhang RT, Chen JR (2001). Plant ecology of the outer coast of the Minjiang River Estuary in Fujian. Acta Oceanologica Sinica, 23(5), 110-115. (in Chinese with English abstracts) |
[ 胡慧娟, 张娆挺, 陈剑榕 (2001). 福建闽江口外海岸植物生态. 海洋学报, 23(5), 110-115.] | |
[14] | Li XX (2005). Types, distribution and evolution of sandy vegetations along coasts in Guangxi. Journal of Guangxi Academy of Sciences, 21, 27-36. (in Chinese with English abstracts) |
[ 李信贤 (2005). 广西海岸沙生植被的类型及其分布和演潜. 广西科学院学报, 21, 27-36.] | |
[15] |
Lynch J (1995). Root architecture and plant productivity. Plant Physiology, 109, 7-13.
DOI URL PMID |
[16] | Ma KD, Gao L, Yan ZJ, Asga, Fu LG (2010). Study on root system of plant community in different kinds of sandy land in Hobq. Pratacultural Science, 27(5), 1-9. (in Chinese with English abstracts) |
[ 马阔东, 高丽, 闫志坚, 阿斯嘎, 富兰格 (2010). 库布齐沙漠不同类型沙地上植物群落根系研究. 草业科学, 27(5), 1-9.] | |
[17] |
Malamy JE (2005). Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell & Environment, 28, 67-77.
URL PMID |
[18] | McMinn RG (1963). Characteristics of Douglas-fir root systems. Canadian Journal of Botany, 41, 105-122. |
[19] | Ren AZ, Gao YB, Wang JL (2001). Root distribution and canopy structure of Salix gordejevii in different sandy land habitats. Acta Ecologica Sinica, 21, 399-404. (in Chinese with English abstracts) |
[ 任安芝, 高玉葆, 王金龙 (2001). 不同沙地生境下黄柳(Salix gordejevii)的根系分布和冠层结构特征. 生态学报, 21, 399-404.] | |
[20] | Shan JL, Yu L (2008). Study on the spermatophyte flora of the coastal sandy region of Hainan Island. Guangdong Forestry Science and Technology, 24(6), 37-40. (in Chinese with English abstracts) |
[ 单家林, 余琳 (2008). 海南滨海砂地种子植物区系的初步研究. 广东林业科技, 24(6), 37-40.] | |
[21] | Shan LS, Li Y, Dong QL, Geng DM (2012). Ecological adaptation of Reaumuria soongorica root system architecture to arid environment. Journal of Desert Research, 32, 1283-1290. (in Chinese with English abstracts) |
[ 单立山, 李毅, 董秋莲, 耿冬梅 (2012). 红砂根系构型对干旱的生态适应. 中国沙漠, 32, 1283-1290.] | |
[22] |
Shan LS, Li Y, Ren W, Su SP, Dong QL, Geng DM (2013). Root architecture of two desert plants in central Hexi Corridor of Northwest China. Chinese Journal of Applied Ecology, 24, 25-31. (in Chinese with English abstracts)
URL PMID |
[ 单立山, 李毅, 任伟, 苏世平, 董秋莲, 耿冬梅 (2013). 河西走廊中部两种荒漠植物根系构型特征. 应用生态学报, 24, 25-31.]
PMID |
|
[23] | Strahler AN (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63, 1117-1142. |
[24] | Sun HG, Chen YT (2010). Root growth patterns of four coastal shelter forest tree species in response to salt stress. Chinese Journal of Ecology, 29, 2365-2372. (in Chinese with English abstracts) |
[ 孙洪刚, 陈益泰 (2010). 沿海防护林四个树种根系分布对盐胁迫的响应. 生态学杂志, 29, 2365-2372.] | |
[25] | Yang XL, Zhang XM, Li YL, Li SC, Sun HL (2008). Analysis of root architecture and root adaptive strategy in the Taklimakan desert area of China. Journal of Plant Ecology (Chinese Version), 32, 1268-1276. (in Chinese with English abstracts) |
[ 杨小林, 张希明, 李义玲, 李绍才, 孙海龙 (2008). 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略. 植物生态学报, 32, 1268-1276.] | |
[26] | Zhang JC, Hu HB, Li DJ (1992). Root research on the main afforestation tree species on the littoral region in Northern Jiangsu Province. Journal of Nanjing Forestry University, 16, 35-40. (in Chinese with English abstracts) |
[ 张金池, 胡海波, 李大江 (1992). 苏北淤泥质海岸主要造林树种根系研究. 南京林业大学学报, 16, 35-40.] | |
[27] |
Zhou YS, Wang LQ (2011). Ecological adaptation of root architecture to grassland degradation in Potentilla acaulis. Chinese Journal of Plant Ecology, 35, 490-499. (in Chinese with English abstracts)
DOI URL |
[ 周艳松, 王立群 (2011). 星毛委陵菜根系构型对草原退化的生态适应. 植物生态学报, 35, 490-499.] |
[1] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[2] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[3] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[4] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[5] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[6] | 李豪, 马如玉, 强波, 贺聪, 韩路, 王海珍. 胡杨当年生小枝茎构型对展叶效率的影响[J]. 植物生态学报, 2021, 45(11): 1251-1262. |
[7] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[8] | 张乔艳, 唐丽霞, 廖华刚, 潘露, 陈龙, 黄同丽. 多花木蓝根截面微观结构对其抗拉特性的影响[J]. 植物生态学报, 2019, 43(8): 709-717. |
[9] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[10] | 祝维, 余立璇, 赵德海, 贾黎明. 基于根系发育分级的砂壤土下成熟林木根系构型分析[J]. 植物生态学报, 2019, 43(2): 119-130. |
[11] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[12] | 席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[13] | 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475-486. |
[14] | 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. 河北省天然草地生物量和碳密度空间分布格局[J]. 植物生态学报, 2018, 42(3): 265-276. |
[15] | 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞. 中国草地生态系统根系周转的空间格局和驱动因子[J]. 植物生态学报, 2018, 42(3): 337-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19