植物生态学报 ›› 2014, Vol. 38 ›› Issue (10): 1041-1052.DOI: 10.3724/SP.J.1258.2014.00098
所属专题: 生态化学计量
胡伟芳1,2, 章文龙1,2, 张林海1,2, 陈晓艳1, 林伟1, 曾从盛1,2,*(), 仝川1,2
收稿日期:
2014-04-08
接受日期:
2014-07-08
出版日期:
2014-04-08
发布日期:
2021-04-20
通讯作者:
曾从盛
作者简介:
* E-mail: cszeng@fjnu.edu.cn基金资助:
HU Wei-Fang1,2, ZHANG Wen-Long1,2, ZHANG Lin-Hai1,2, CHEN Xiao-Yan1, LIN Wei1, ZENG Cong-Sheng1,2,*(), TONG Chuan1,2
Received:
2014-04-08
Accepted:
2014-07-08
Online:
2014-04-08
Published:
2021-04-20
Contact:
ZENG Cong-Sheng
摘要:
研究湿地植物氮(N)和磷(P)的生态化学计量学特征对揭示植物与生境的耦合关系具有重要意义。通过收集中国52个采样区湿地植物不同器官和全株样本的N和P含量, 对其进行分类和统计分析, 探讨植物器官、生长期、植物类型、湿地类型和气候带对湿地植物N和P生态化学计量学特征的影响。结果表明: 1)湿地植物各器官N、P和N:P的几何平均值均表现为叶片(N, 16.07 mg·g-1; P, 1.85 mg·g-1; N:P, 8.67) >地上部分(N, 13.54 mg·g-1; P, 1.72 mg·g-1; N:P, 7.96) >茎(N, 7.86 mg·g-1; P, 1.71 mg·g-1; N:P, 4.58); 2)叶片N含量随时间变化呈现“三峰”型变化, 峰值分别出现在5月、7月和9月; 茎的N含量随时间变化表现为“双峰”型, 峰值出现在5月和9月; 成熟期之前, 植物叶片的N:P与N趋同波动, N:P主要受N含量控制; 衰老期N:P受P含量控制。3)湿地类型是影响植物叶片N和P生态化学计量特征的关键因素, N和P含量最高值出现在河流, 最低值出现在沼泽湿地, N:P的变化趋势大致与之相反。4)植物叶片N、P和N:P的几何平均值都表现为热带>温带>亚热带, 但总体差异不显著(p > 0.05)。5)中国大部分湿地植物叶片N:P < 14, 表现为N限制。
胡伟芳, 章文龙, 张林海, 陈晓艳, 林伟, 曾从盛, 仝川. 中国主要湿地植被氮和磷生态化学计量学特征. 植物生态学报, 2014, 38(10): 1041-1052. DOI: 10.3724/SP.J.1258.2014.00098
HU Wei-Fang, ZHANG Wen-Long, ZHANG Lin-Hai, CHEN Xiao-Yan, LIN Wei, ZENG Cong-Sheng, TONG Chuan. Stoichiometric characteristics of nitrogen and phosphorus in major wetland vegetation of China. Chinese Journal of Plant Ecology, 2014, 38(10): 1041-1052. DOI: 10.3724/SP.J.1258.2014.00098
采样点 Sampling site | 经度 Longitude (E) | 纬度 Latitude (N) | 采样点 Sampling site | 经度 Longitude (E) | 纬度 Latitude (N) | |
---|---|---|---|---|---|---|
海南青澜港 Qinlan Harbor, Hainan | 110.73° | 19.46° | 浙江杭州湾 Hangzhou Bay, Zhejiang | 121.15° | 30.31° | |
海南河港村 Hegang Village, Hainan | 110.40° | 19.85° | 湖北三峡水库 Three Gorges Reservoir, Hubei | 108.85° | 30.33° | |
海南东寨港 Dongzhai Harbor, Hainan | 110.40° | 19.85° | 湖北青菱湖 Qingling Lake, Hubei | 114.23° | 30.40° | |
广西北海 Beihai, Guangxi | 109.23° | 21.43° | 湖北南湖 Nanhu Lake, Hubei | 114.37° | 30.48° | |
广西英罗湾 Yingluo Bay,Guangxi | 109.72° | 21.47° | 湖北三角湖 Sanjiao Lake, Hubei | 114.17° | 30.52° | |
广西山口 Shankou, Guangxi | 109.74° | 21.53° | 湖北墨水湖 Moshui Lake, Hubei | 114.23° | 30.53° | |
广西茅尾海 Maowei Lake, Guangxi | 108.54° | 21.83° | 湖北龙阳湖 Longyang Lake, Hubei | 114.18° | 30.55° | |
广东福田 Futian, Guangdong | 114.07° | 22.53° | 湖北后宫湖 Hougong Lake, Hubei | 114.32° | 30.55° | |
广东太平 Taiping, Guangdong | 113.73° | 22.77° | 湖北陶家大湖 Taojia Great Lake, Hubei | 114.60° | 30.65° | |
广西南宁 Nanning, Guangxi | 108.27° | 22.83° | 湖北涨渡湖 Zhangdu Lake, Hubei | 114.70° | 30.65° | |
广东广州 Guangzhou, Guangdong | 113.33° | 23.13° | 上海沙田湖 Shatian Lake, Shanghai | 120.92° | 31.12° | |
云南长桥海 Changqiao Lake, Yunnan | 103.35° | 23.43° | 上海九段沙 Jiuduansha, Shanghai | 121.98° | 31.17° | |
云南杞麓湖 Qilu Lake, Yunnan | 102.75° | 24.13° | 上海柒湖 Qihu Lake, Shanghai | 112.60° | 31.18° | |
云南星云湖 Xingyun Lake, Yunnan | 102.75° | 24.28° | 上海梦清园 Mengqing Garden, Shanghai | 121.43° | 31.23° | |
福建九龙江 Jiulong River, Fujian | 117.38° | 24.40° | 江苏太湖 Taihu Lake, Jiangsu | 120.24° | 31.24° | |
福建九龙江 Jiulong River, Fujian | 117.92° | 24.40° | 江苏太湖 Taihu Lake, Jiangsu | 122.37° | 31.45° | |
云南抚仙湖 Fuxian Lake, Yunnan | 102.88° | 24.48° | 江苏五里湖 Wuli Lake, Jiangsu | 120.25° | 31.50° | |
云南贡县 Gong County, Yunnan | 102.80° | 24.83° | 上海崇明 Chongming, Shanghai | 121.75° | 31.50° | |
云南阳宗海 Yangzong Lake, Yunnan | 102.98° | 24.85° | 江苏南京 Nanjing, Jiangsu | 118.85° | 32.02° | |
云南清水海 Qingshui Lake, Yunnan | 103.12° | 25.60° | 江苏北固山 Beigu Moutain, Jiangsu | 119.47° | 32.25° | |
浙江西湖 Xihu Lake, Zhejiang | 100.20° | 25.72° | 江苏盐城 Yancheng, Jiangsu | 120.37° | 33.52° | |
云南洱海 Erhai Lake, Yunnan | 100.18° | 25.78° | 江苏骆马湖 Luoma Lake, Jiangsu | 118.20° | 34.12° | |
云南弥苴河 Miju River, Yunnan | 100.13° | 25.93° | 江苏徐州 Xuzhou, Jiangsu | 117.13° | 34.22° | |
福建闽江口 Min River Estuary, Fujian | 119.63° | 26.03° | 山东济南 Jinan, Shandong | 117.01° | 36.67° | |
云南茈碧湖 Cibi Lake, Yunnan | 99.95° | 26.13° | 江苏盐城 Yancheng, Jiangsu | 120.60° | 36.90° | |
云南剑湖 Hoa kiem Lake, Yunnan | 99.92° | 26.48° | 山东莱州湾 Laizhou Bay, Shandong | 119.02° | 37.20° | |
贵州百花湖 Baihua Lake, Guizhou | 106.51° | 26.64° | 山东黄河口 Yellow River Estuary, Shandong | 119.25° | 37.72° | |
澳门路氹 Dsome sort ofg, Macao | 113.56° | 27.14° | 山东黄河口 Yellow River Estuary, Shandong | 118.60° | 38.07° | |
湖南株洲 Zhuzhou, Hunan | 113.10° | 27.92° | 山东贝壳堤岛 Beikedi Ialand, Shandong | 117.94° | 38.20° | |
湖南长沙 Changsha, Hunan | 113.32° | 28.55° | 河北白洋淀 Baiyangdian Lake, Heibei | 115.88° | 38.88° | |
江西南昌 Nanchang, Jiangxi | 115.83° | 28.77° | 甘肃张掖 Zhangye, Gansu | 100.45° | 39.00° | |
湖南洞庭湖 Dongting Lake, Hunan | 112.58° | 28.88° | 天津 Tianjin | 117.15° | 39.10° | |
采样点 Sampling site | 经度 Longitude | 纬度 Latitude | 采样点 Sampling site | 经度 Longitude | 纬度 Latitude | |
江西南矶山 Nanji Mountain, Jiangxi | 116.37° | 28.92° | 天津 Tianjin | 117.17° | 39.10° | |
江西鄱阳湖 Poyang Lake, Jiangxi | 116.28° | 28.98° | 天津大黄堡 Dahuangbao, Tianjin | 117.27° | 39.43° | |
湖北老江河 Laojiang River, Hubei | 113.05° | 29.58° | 辽宁双台子河口 Shuangtaizi Estuary, Liaoning | 121.83° | 40.86° | |
湖北洪湖 Honghu Lake, Hubei | 113.47° | 29.80° | 内蒙古乌梁素海 Ulansuhai Nur, Nei Mongol | 108.85° | 40.90° | |
浙江宁波 Ningbo, Zhejiang | 121.70° | 29.82° | 辽宁双台子河口 Shuangtaizi Estuary, Liaoning | 121.91° | 41.03° | |
湖北梁子湖 Liangzi Lake, Hubei | 112.36° | 30.20° | 辽宁浑河 Hunhe River, Liaoning | 124.46° | 41.99° | |
湖北红星湖 Hongxing Lake, Hubei | 114.72° | 30.20° | 黑龙江松嫩平原 Songnen Plain, Heilongjiang | 123.52° | 44.55° | |
浙江西溪湿地 Xixi Wetland, Zhejiang | 120.07° | 30.21° | 黑龙江松嫩平原 Songnen Plain, Heilongjiang | 125.22° | 45.77° | |
浙江杭州湾 Hangzhou Bay, Zhejiang | 121.13° | 30.22° | 黑龙江松嫩平原 Songnen Plain, Heilongjiang | 124.19° | 46.51° | |
湖北保安湖 Bao’an Lake, Hubei | 114.73° | 30.23° | 黑龙江三江平原 Three River Plain, Heilongjiang | 133.50° | 47.58° | |
浙江杭州 Hangzhou, Zhejiang | 120.18° | 30.27° | 黑龙江三江平原 Sanjiang Plain, Heilongjiang | 133.52° | 47.58° | |
浙江杭州 Hangzhou, Zhejiang | 120.20° | 30.27° |
表1 样点分布
Table 1 Distribution of sampling sites
采样点 Sampling site | 经度 Longitude (E) | 纬度 Latitude (N) | 采样点 Sampling site | 经度 Longitude (E) | 纬度 Latitude (N) | |
---|---|---|---|---|---|---|
海南青澜港 Qinlan Harbor, Hainan | 110.73° | 19.46° | 浙江杭州湾 Hangzhou Bay, Zhejiang | 121.15° | 30.31° | |
海南河港村 Hegang Village, Hainan | 110.40° | 19.85° | 湖北三峡水库 Three Gorges Reservoir, Hubei | 108.85° | 30.33° | |
海南东寨港 Dongzhai Harbor, Hainan | 110.40° | 19.85° | 湖北青菱湖 Qingling Lake, Hubei | 114.23° | 30.40° | |
广西北海 Beihai, Guangxi | 109.23° | 21.43° | 湖北南湖 Nanhu Lake, Hubei | 114.37° | 30.48° | |
广西英罗湾 Yingluo Bay,Guangxi | 109.72° | 21.47° | 湖北三角湖 Sanjiao Lake, Hubei | 114.17° | 30.52° | |
广西山口 Shankou, Guangxi | 109.74° | 21.53° | 湖北墨水湖 Moshui Lake, Hubei | 114.23° | 30.53° | |
广西茅尾海 Maowei Lake, Guangxi | 108.54° | 21.83° | 湖北龙阳湖 Longyang Lake, Hubei | 114.18° | 30.55° | |
广东福田 Futian, Guangdong | 114.07° | 22.53° | 湖北后宫湖 Hougong Lake, Hubei | 114.32° | 30.55° | |
广东太平 Taiping, Guangdong | 113.73° | 22.77° | 湖北陶家大湖 Taojia Great Lake, Hubei | 114.60° | 30.65° | |
广西南宁 Nanning, Guangxi | 108.27° | 22.83° | 湖北涨渡湖 Zhangdu Lake, Hubei | 114.70° | 30.65° | |
广东广州 Guangzhou, Guangdong | 113.33° | 23.13° | 上海沙田湖 Shatian Lake, Shanghai | 120.92° | 31.12° | |
云南长桥海 Changqiao Lake, Yunnan | 103.35° | 23.43° | 上海九段沙 Jiuduansha, Shanghai | 121.98° | 31.17° | |
云南杞麓湖 Qilu Lake, Yunnan | 102.75° | 24.13° | 上海柒湖 Qihu Lake, Shanghai | 112.60° | 31.18° | |
云南星云湖 Xingyun Lake, Yunnan | 102.75° | 24.28° | 上海梦清园 Mengqing Garden, Shanghai | 121.43° | 31.23° | |
福建九龙江 Jiulong River, Fujian | 117.38° | 24.40° | 江苏太湖 Taihu Lake, Jiangsu | 120.24° | 31.24° | |
福建九龙江 Jiulong River, Fujian | 117.92° | 24.40° | 江苏太湖 Taihu Lake, Jiangsu | 122.37° | 31.45° | |
云南抚仙湖 Fuxian Lake, Yunnan | 102.88° | 24.48° | 江苏五里湖 Wuli Lake, Jiangsu | 120.25° | 31.50° | |
云南贡县 Gong County, Yunnan | 102.80° | 24.83° | 上海崇明 Chongming, Shanghai | 121.75° | 31.50° | |
云南阳宗海 Yangzong Lake, Yunnan | 102.98° | 24.85° | 江苏南京 Nanjing, Jiangsu | 118.85° | 32.02° | |
云南清水海 Qingshui Lake, Yunnan | 103.12° | 25.60° | 江苏北固山 Beigu Moutain, Jiangsu | 119.47° | 32.25° | |
浙江西湖 Xihu Lake, Zhejiang | 100.20° | 25.72° | 江苏盐城 Yancheng, Jiangsu | 120.37° | 33.52° | |
云南洱海 Erhai Lake, Yunnan | 100.18° | 25.78° | 江苏骆马湖 Luoma Lake, Jiangsu | 118.20° | 34.12° | |
云南弥苴河 Miju River, Yunnan | 100.13° | 25.93° | 江苏徐州 Xuzhou, Jiangsu | 117.13° | 34.22° | |
福建闽江口 Min River Estuary, Fujian | 119.63° | 26.03° | 山东济南 Jinan, Shandong | 117.01° | 36.67° | |
云南茈碧湖 Cibi Lake, Yunnan | 99.95° | 26.13° | 江苏盐城 Yancheng, Jiangsu | 120.60° | 36.90° | |
云南剑湖 Hoa kiem Lake, Yunnan | 99.92° | 26.48° | 山东莱州湾 Laizhou Bay, Shandong | 119.02° | 37.20° | |
贵州百花湖 Baihua Lake, Guizhou | 106.51° | 26.64° | 山东黄河口 Yellow River Estuary, Shandong | 119.25° | 37.72° | |
澳门路氹 Dsome sort ofg, Macao | 113.56° | 27.14° | 山东黄河口 Yellow River Estuary, Shandong | 118.60° | 38.07° | |
湖南株洲 Zhuzhou, Hunan | 113.10° | 27.92° | 山东贝壳堤岛 Beikedi Ialand, Shandong | 117.94° | 38.20° | |
湖南长沙 Changsha, Hunan | 113.32° | 28.55° | 河北白洋淀 Baiyangdian Lake, Heibei | 115.88° | 38.88° | |
江西南昌 Nanchang, Jiangxi | 115.83° | 28.77° | 甘肃张掖 Zhangye, Gansu | 100.45° | 39.00° | |
湖南洞庭湖 Dongting Lake, Hunan | 112.58° | 28.88° | 天津 Tianjin | 117.15° | 39.10° | |
采样点 Sampling site | 经度 Longitude | 纬度 Latitude | 采样点 Sampling site | 经度 Longitude | 纬度 Latitude | |
江西南矶山 Nanji Mountain, Jiangxi | 116.37° | 28.92° | 天津 Tianjin | 117.17° | 39.10° | |
江西鄱阳湖 Poyang Lake, Jiangxi | 116.28° | 28.98° | 天津大黄堡 Dahuangbao, Tianjin | 117.27° | 39.43° | |
湖北老江河 Laojiang River, Hubei | 113.05° | 29.58° | 辽宁双台子河口 Shuangtaizi Estuary, Liaoning | 121.83° | 40.86° | |
湖北洪湖 Honghu Lake, Hubei | 113.47° | 29.80° | 内蒙古乌梁素海 Ulansuhai Nur, Nei Mongol | 108.85° | 40.90° | |
浙江宁波 Ningbo, Zhejiang | 121.70° | 29.82° | 辽宁双台子河口 Shuangtaizi Estuary, Liaoning | 121.91° | 41.03° | |
湖北梁子湖 Liangzi Lake, Hubei | 112.36° | 30.20° | 辽宁浑河 Hunhe River, Liaoning | 124.46° | 41.99° | |
湖北红星湖 Hongxing Lake, Hubei | 114.72° | 30.20° | 黑龙江松嫩平原 Songnen Plain, Heilongjiang | 123.52° | 44.55° | |
浙江西溪湿地 Xixi Wetland, Zhejiang | 120.07° | 30.21° | 黑龙江松嫩平原 Songnen Plain, Heilongjiang | 125.22° | 45.77° | |
浙江杭州湾 Hangzhou Bay, Zhejiang | 121.13° | 30.22° | 黑龙江松嫩平原 Songnen Plain, Heilongjiang | 124.19° | 46.51° | |
湖北保安湖 Bao’an Lake, Hubei | 114.73° | 30.23° | 黑龙江三江平原 Three River Plain, Heilongjiang | 133.50° | 47.58° | |
浙江杭州 Hangzhou, Zhejiang | 120.18° | 30.27° | 黑龙江三江平原 Sanjiang Plain, Heilongjiang | 133.52° | 47.58° | |
浙江杭州 Hangzhou, Zhejiang | 120.20° | 30.27° |
植物器官 Plant organ | N (mg·g-1) | P (mg·g-1) | N:P | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样本 数 n | 几何 平均值 Geometric mean | 标准 误差 SE | 变化范围 Variation range | 样本 数 n | 几何 平均值 Geometric mean | 标准 误差 SE | 变化范围 Variation range | 样本 数 n | 几何 平均值 Geometric mean | 标准 误差 SE | 变化范围 Variation range | |||
叶片 Leaves | 242 | 16.07 | 1.03 | 1.77-45.06 | 209 | 1.85 | 0.13 | 0.13-9.89 | 217 | 8.67 | 0.59 | 1.82-43.01 | ||
茎 Stems | 121 | 7.86 | 0.71 | 1.80-26.37 | 121 | 1.71 | 0.16 | 0.17-10.45 | 121 | 4.58 | 0.42 | 0.92-26.68 | ||
地上部分 Aboveground organs | 252 | 13.54 | 0.85 | 1.08-40.99 | 252 | 1.72 | 0.11 | 0.11-13.64 | 268 | 7.96 | 0.49 | 1.02-26.72 |
表2 湿地植物不同器官N、P和N:P的几何平均值
Table 2 Geometric means of N, P and N:P in different organs of wetland plants
植物器官 Plant organ | N (mg·g-1) | P (mg·g-1) | N:P | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样本 数 n | 几何 平均值 Geometric mean | 标准 误差 SE | 变化范围 Variation range | 样本 数 n | 几何 平均值 Geometric mean | 标准 误差 SE | 变化范围 Variation range | 样本 数 n | 几何 平均值 Geometric mean | 标准 误差 SE | 变化范围 Variation range | |||
叶片 Leaves | 242 | 16.07 | 1.03 | 1.77-45.06 | 209 | 1.85 | 0.13 | 0.13-9.89 | 217 | 8.67 | 0.59 | 1.82-43.01 | ||
茎 Stems | 121 | 7.86 | 0.71 | 1.80-26.37 | 121 | 1.71 | 0.16 | 0.17-10.45 | 121 | 4.58 | 0.42 | 0.92-26.68 | ||
地上部分 Aboveground organs | 252 | 13.54 | 0.85 | 1.08-40.99 | 252 | 1.72 | 0.11 | 0.11-13.64 | 268 | 7.96 | 0.49 | 1.02-26.72 |
图3 湿地植物叶片和茎的N、P与N:P时间动态(几何平均值±标准误差)。
Fig. 3 Temporal dynamics of N and P contents and the N:P in leaves and stems of wetland plants (geometric mean ± SE).
图4 不同植物生活型植物N和P生态化学计量值(几何平均值±标准误差)。 E, 挺水植物; F, 浮叶植物; H, 湿生草本; S, 沉水植物; W, 湿生木本。不同小写字母表示差异显著(p < 0.05)。
Fig. 4 Stoichiometric values of nitrogen (N) and phosphorus (P) in wetland plants with different life forms (geometric mean ± SE). E, emergent aquatic plant; F, floating-leaved plant; H, wet unripe herbaceous; S, submerged plant; W, wet unripe woody. Different lowercase letters indicate significant differences (p < 0.05).
图5 主要湿地植物叶片的N、P和N:P气候带分布。 相同小写字母表示差异不显著(p > 0.05)。
Fig. 5 Distribution of leaf N, P and N:P in major wetland plants of different climate zones. The same lowercase letters indicate no significant differences (p > 0.05).
图6 不同湿地类型植物叶片的N、P及N:P的分布。 不同小写字母表示差异显著(p < 0.05)。
Fig. 6 Distribution of leaf N, P and N:P in plants of different wetlands. Different lowercase letters indicate significant differences (p < 0.05).
类型 Types | N (mg·g-1) | P (mg·g-1) | N:P | 文献 References | |||||
---|---|---|---|---|---|---|---|---|---|
平均值 Mean | 样本数 n | 平均值 Mean | 样本数 n | 平均值 Mean | 样本数 n | ||||
中国陆生植物 Terrestrial plants of China | 18.6 | 554 | 1.21 | 745 | 14.4 | 547 | Han et al., | ||
中国陆生植物 Terrestrial plants of China | 17.55 | 654 | 1.28 | 654 | 13.5 | 654 | Ren et al., | ||
全球植物 Global plants | 18.3 | 1 251 | 1.42 | 923 | 11.8 | 894 | Reich & Oleksyn, | ||
全球植物 Global plants | 17.7 | 398 | 1.58 | 406 | 11 | 325 | Elser et al., | ||
全球植物(衰老叶片) Global plants (senesced leaf) | 10 | 1 089 | 0.7 | 625 | 19.2 | 500 | Yuan & Chen, | ||
德国湿地植物 Wetland plants of Germany | 17.7 | 242 | 1.87 | 242 | 10.0 | 242 | Minden & Kleyer, | ||
中国湿地植物 Wetland plants of China | 16.07 | 242 | 1.85 | 209 | 8.67 | 217 | 本研究 This study |
表3 大尺度的植物叶片N和P生态化学计量特征对比
Table 3 Comparison of large-scale leaf N and P ecological stoichiometric characteristics of plants
类型 Types | N (mg·g-1) | P (mg·g-1) | N:P | 文献 References | |||||
---|---|---|---|---|---|---|---|---|---|
平均值 Mean | 样本数 n | 平均值 Mean | 样本数 n | 平均值 Mean | 样本数 n | ||||
中国陆生植物 Terrestrial plants of China | 18.6 | 554 | 1.21 | 745 | 14.4 | 547 | Han et al., | ||
中国陆生植物 Terrestrial plants of China | 17.55 | 654 | 1.28 | 654 | 13.5 | 654 | Ren et al., | ||
全球植物 Global plants | 18.3 | 1 251 | 1.42 | 923 | 11.8 | 894 | Reich & Oleksyn, | ||
全球植物 Global plants | 17.7 | 398 | 1.58 | 406 | 11 | 325 | Elser et al., | ||
全球植物(衰老叶片) Global plants (senesced leaf) | 10 | 1 089 | 0.7 | 625 | 19.2 | 500 | Yuan & Chen, | ||
德国湿地植物 Wetland plants of Germany | 17.7 | 242 | 1.87 | 242 | 10.0 | 242 | Minden & Kleyer, | ||
中国湿地植物 Wetland plants of China | 16.07 | 242 | 1.85 | 209 | 8.67 | 217 | 本研究 This study |
类型 Types | 条件 Conditions | 文献 References |
---|---|---|
湿地草本植物 Herb of wetland | N限制 N limitation (N:P < 14) P限制 P limitation (N:P > 16) | Verhoeven et al., Koerselman & Meuleman, |
欧洲低地沼泽 European lowland fens | N限制 N limitation (N:P < 8-15) P限制 P limitation (N:P > 23-31 | Boeye et al., |
波兰、比利时和荷兰湿地 Poland, Belgium and the Dutch wetlands | N限制 N limitation (N:P < 14.5) | Olde et al., |
荷兰与加拿大沼泽湿地 Dutch and Canada marshes | N限制 N limitation (N:P < 10) P限制 P limitation (N:P > 20) N和P共同限制 N-P co-limitation (10 < N:P < 20) | Güsewellet al., Wang & Moore, |
荷兰草原 The Dutch grassland | N限制 N limitation (N:P < 10 and N < 20 mg·g-1) | Braakhekke & Hooftman, |
沼泽湿地 Marsh wetland | N限制 N limitation (N:P < 14) | Bott et al., |
表4 湿地植物叶片N:P与N限制和P限制的判断
Table 4 Judgment on leaf N:P and N limitations as well as P limitation in wetland plants
类型 Types | 条件 Conditions | 文献 References |
---|---|---|
湿地草本植物 Herb of wetland | N限制 N limitation (N:P < 14) P限制 P limitation (N:P > 16) | Verhoeven et al., Koerselman & Meuleman, |
欧洲低地沼泽 European lowland fens | N限制 N limitation (N:P < 8-15) P限制 P limitation (N:P > 23-31 | Boeye et al., |
波兰、比利时和荷兰湿地 Poland, Belgium and the Dutch wetlands | N限制 N limitation (N:P < 14.5) | Olde et al., |
荷兰与加拿大沼泽湿地 Dutch and Canada marshes | N限制 N limitation (N:P < 10) P限制 P limitation (N:P > 20) N和P共同限制 N-P co-limitation (10 < N:P < 20) | Güsewellet al., Wang & Moore, |
荷兰草原 The Dutch grassland | N限制 N limitation (N:P < 10 and N < 20 mg·g-1) | Braakhekke & Hooftman, |
沼泽湿地 Marsh wetland | N限制 N limitation (N:P < 14) | Bott et al., |
[1] | Ågren GI (2004). The C:N:P stoichiometry of autotrophs- theory and observations. Ecology Letters, 7,185-191. |
[2] | Barko JW, James WF (1998). Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen E, Sondergaard M, Sondergaard M, Christoffersen K eds. The Structuring Role of Submerged Macrophytes in Lakes. Springer- Verlag, New York. 197-214. |
[3] | Boeye D, Verhagen B, van Haesebroeck V, Verheyen RF (1997). Nutrient limitation in species-rich lowland fens. Journal of Vegetation Science, 8,415-424. |
[4] | Bott T, Meyer GA, Young EB (2008). Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments. New Phytologist, 180,631-641. |
[5] | Braakhekke WG, Hooftman DAP (1999). The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science, 10,187-200. |
[6] | Chen FS, Niklas KJ, Zeng DH (2011). Important foliar traits depend on species-grouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China. Plant and Soil, 340,337-345. |
[7] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408,578-580.
DOI URL PMID |
[8] | Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186,593-608. |
[9] | Güsewell S, Koerselman W, Verhoeven JTA (2003). Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 13,372-384. |
[10] | González AL, Kominoski JS, Danger M, Ishida S, Iwai N, Rubach A (2010). Can ecological stoichiometry help explain patterns of biological invasions? Oikos, 119,779-790. |
[11] | Greenway M (1997). Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Science and Technology, 35,135-142. |
[12] |
Hall EK, Maixner F, Franklin O, Daims H, Richter A, Battin T (2010). Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches. Ecosystems, 14,261-273.
DOI URL |
[13] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34,2-6. (in Chinese with English abstract) |
[ 贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34,2-6.] | |
[14] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168,377-385. |
[15] |
Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14,788-796.
DOI URL PMID |
[16] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155,301-310.
DOI URL PMID |
[17] | Hessen DO, Elser JJ, Sterner RW, Urabe J (2013). Ecological stoichiometry: an elementary approach using basic principles. Limnology and Oceanography, 58,2219-2236. |
[18] | Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999). Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry, 46,7-43. |
[19] | Jiang HQ, Duan CQ, Yang SH, Wang CY, Su WH (2004). Plant Ecology. Higher Education Press, Beijing. (in Chinese) |
[ 姜汉侨, 段昌群, 杨树华, 王崇云, 苏文华 (2004). 植物生态学报. 高等教育出版社, 北京.] | |
[20] | Kang HZ, Zhuang HL, Wu LL, Liu QL, Shen GR, Beng B, Man RZ, Liu CJ (2011). Variation in leaf nitrogen and phosphorus stoichiometry in Picea abies across Europe: an analysis based on local observations. Forest Ecology and Management, 261,195-202. |
[21] |
Kerkhoff AJ, Enquist BJ (2006). Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9,419-427.
DOI URL PMID |
[22] | Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 14,585-598. |
[23] | Koerselman W, Meuleman AF (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33,1441-1450. |
[24] | Lei ZX, Xu DL, Xie DF, Liu ZW (2008). Relationship between N and P contents in aquatic macrophytes, water and sediment in Taihu Lake, China. Journal of Plant Ecology (Chinese Version), 32,402-407. (in Chinese with English abstract) |
[ 雷泽湘, 徐德兰, 谢贻发, 刘正文 (2008). 太湖水生植物氮磷与湖水和沉积物氮磷含量的关系. 植物生态学报, 32,402-407.] | |
[25] | Li HS (2002). Modern Plant Physiology. Higher Education Press, Beijing. 96-100. (in Chinese) |
[ 李合生 (2002). 现代植物生理学. 高等教育出版社, 北京. 96-100.] | |
[26] | Li Z, Han L, Liu YH, An SQ, Leng X (2012). C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China. Chinese Journal of Plant Ecology, 36,1054-1061. (in Chinese with English abstract) |
[ 李征, 韩琳, 刘玉虹, 安树青, 冷欣 (2012). 滨海盐地碱蓬不同生长阶段叶片C、N、P化学计量特征. 植物生态学报, 36,1054-1061.] | |
[27] | Liu M, Xu SY, Hou LJ (2007). The Environmental Biogeochemistry Process of Estuary Tidal Flat Sediments and Water Interface Nutrient in Yangtze. Science Press, Beijing. (in Chinese) |
[ 刘敏, 许世远, 侯立军 (2007). 长江口潮滩沉积物-水界面营养盐环境生物地球化学过程. 科学出版社, 北京.] | |
[28] | Lü CQ, Tian HQ, Huang Y (2007). Ecological effects of increased nitrogen deposition in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version), 31,205-218. (in Chinese with English abstract) |
[ 吕超群, 田汉勤, 黄耀 (2007). 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 31,205-218.] | |
[29] | Lu J, Zhou HX, Tian GY, Liu GH (2011). Nitrogen and phosphorus contents in 44 wetland species from the Lake Erhai Basin. Acta Ecologica Sinica, 31,709-715. (in Chinese with English abstract) |
[ 鲁静, 周虹霞, 田广宇, 刘贵华 (2011). 洱海流域44种湿地植物的氮磷含量特征. 生态学报, 31,709-715.] | |
[30] |
Minden V, Kleyer M (2014). Internal and external regulation of plant organ stoichiometry. Plant Biology, 16,897-907.
URL PMID |
[31] | Mu XQ (2003). Plant Biology. Northwest A & F University Press, Xi’an. 82. (in Chinese) |
[ 慕小倩 (2003). 植物生物学. 西北农林科技大学出版社, 西安. 82.] | |
[32] | Nielsen SL, Enriquez S, Duarte CM, Sand-Jensen K (1996). Scaling maximum growth rates across photosynthetic organisms. Functional Ecology, 10,167-175. |
[33] | Olde Venterink H, Wassen MJ, Verkroost AWM, de Ruiter PC (2003). Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology, 84,2191-2199. |
[34] | Oliveira G, Martins-Loução MA, Correia O, Catarino F (1996). Nutrient dynamics in crown tissues of cork-oak (Quercus suber L.). Trees, 10,247-254. |
[35] | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18,137-149. |
[36] | Orgeas J, Ourcival JM, Bonin G (2003). Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suber L.) growing on siliceous soils in Provence (France). Plant Ecology, 164,201-211. |
[37] | Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80,1955-1969. |
[38] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101,11001-11006. |
[39] | Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environmental Science, 28,2665-2673. |
[40] |
Ren SJ, Yu GR, Jiang CM, Fang HJ, Sun XM (2012). Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North-South Transect of East China. Chinese Journal of Applied Ecology, 23,581-586. (in Chinese with English abstract)
URL PMID |
[ 任书杰, 于贵瑞, 姜春明, 方华军, 孙晓敏 (2012). 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征. 应用生态学报, 23,581-586.]
PMID |
|
[41] | Ren SJ, Yu GR, Tao B, Wang SQ (2008). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Chinese Journal of Environmental Science, 28,2665-2673. (in Chinese with English abstract) |
[ 任书杰, 于贵瑞, 陶波, 王绍强 (2008). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28,2665-2673.] | |
[42] | Ren WP, Li XX, Zhang WS (2012). Research progress in phosphorus forms in sediments and environmental factors that influence phosphorus releasing. Environmental Pollution & Control, 34,53-60. (in Chinese with English abstract) |
[ 任万平, 李晓秀, 张汪寿 (2012). 沉积物中磷形态及影响其释放的环境因素研究进展. 环境污染与防治, 34,53-60.] | |
[43] | Sardans J, Rivas-Ubach A, Peñuelas J (2012). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry, 111,1-39.] |
[44] | Shao XX, Li WH, Wu M, Yang WY, Jiang KY, Ye XQ (2013). Dynamics of carbon, nitrogen and phosphorus storage of three dominant marsh plants in Hangzhou Bay coastal wetland. Environmental Science, 34,3451-3457. (in Chinese with English abstract) |
[ 邵学新, 李文华, 吴明, 杨文英, 蒋科毅, 叶小齐 (2013). 杭州湾潮滩湿地3种优势植物碳氮磷储量特征研究. 环境科学, 34,3451-3457.] | |
[45] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[46] | Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25,76-82. (in Chinese with English abstract) |
[ 孙书存, 陈灵芝 (2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25,76-82.] | |
[47] | Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136,679-689. |
[48] | Townsend AR, Cleveland CC, Asner GP, Bustamante MM (2007). Controls over foliar N:P ratios in tropical rain forests. Ecology, 88,107-118. |
[49] |
Verhoeven JT, Koerselman W, Meuleman AF (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegeta- tion: relations with atmospheric inputs and management regimes. Trends in Ecology & Evolution, 11,494-497.
DOI URL PMID |
[50] | Wang M, Moore TR (2014). Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, 17,673-684. |
[51] | Wang SQ, Yu GR (2008). Ecological stoichiometry charac- teristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28,3937-3947. (in Chinese with English abstract) |
[ 王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28,3937-3947.] | |
[52] | Wu TG, Yu MK, Geoff Wang G, Dong Y, Cheng XR (2012). Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in Southeast China. Biochemical Systematics and Ecology, 44,255-263. |
[53] | Xie WX, Zhu KJ, Du HN (2014). A review of ecological stoichiometry characteristics of carbon nitrogen and phosphorus in wetland ecosystems. Advanced Materials Research, 864,1311-1315. |
[54] | Yu HX, Yao YL, Lü XG (2011). Wetland Introduction. Chinese Agriculture Press, Beijing. (in Chinese) |
[ 于洪贤, 姚允龙, 吕宪国 (2011). 湿地概论. 中国农业出版社, 北京.] | |
[55] | Yuan ZY, Chen HYH (2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography, 18,532-542. |
[56] | Zeng CS, Zhang LH, Tong C (2009a). Seasonal variation of nitrogen and phosphorus concentration and accumulation of Cyperus malaccensis in Minjiang River estuary. Chinese Journal of Ecology, 28,788-794. (in Chinese with English abstract) |
[ 曾从盛, 张林海, 仝川 (2009a). 闽江河口湿地短叶茳芏氮、磷含量与积累量季节变化. 生态学杂志, 28,788-794.] | |
[57] | Zeng CS, Zhang LH, Tong C (2009b). Seasonal dynamics of nitrogen and phosphorus in Phragmites australis and Spartina alterniflora in the wetlands of Min River Estuary. Wetland Science, 7,16-24. (in Chinese with English abstract) |
[ 曾从盛, 张林海, 仝川 (2009b). 闽江河口湿地芦苇和互花米草氮、磷养分季节动态. 湿地科学, 7,16-24.] | |
[58] | Zhang LX, Bai YF, Han XG (2003). Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica, 45,1009-1018. |
[59] | Zhang XS (2008). The People’s Republic of China Vegetation Map. Geological Publishing House, Beijing. (in Chinese) |
[ 张新时 (2008). 中国植被图. 地质出版社, 北京.] | |
[60] |
Zhang WL, Zeng CS, Zhang LH, Wang WQ, Lin Y, Ai JQ (2009). Seasonal dynamics of nitrogen and phosphorus absorption efficiency of wetland plants in Minjiang River estuary. Chinese Journal of Applied Ecology, 20,1317-1322. (in Chinese with English abstract)
URL PMID |
[ 章文龙, 曾从盛, 张林海, 王维奇, 林燕, 艾金泉 (2009). 闽江河口湿地植物氮磷吸收效率的季节变化. 应用生态学报, 20,1317-1322.]
PMID |
|
[61] | Zhang ZS, Song XL, Lu XG, Xue ZS (2013). Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seawalls. Journal of Soils and Sediments, 13,1043-1051. |
[62] | Zhou XN, Wang SR, Jin XC (2007). Influences of submerged vegetation Hydrilla verticillata on the forms of inorganic and organic phosphorus and potentially exchangeable phosphate in sediments. Environmental Science, 27,2421-2425. (in Chinese with English abstract) |
[ 周小宁, 王圣瑞, 金相灿 (2007). 沉水植物黑藻对沉积物有机、无机磷形态及潜在可交换性磷的影响. 环境科学, 27,2421-2425.] | |
[63] | Zhu GW, Qin BQ, Gao G, Zhang L, Fan CX (2004). Fractionation of phosphorus in sediments and its relation with soluble phosphorus contents in shallow lakes located in the middle and lower reaches of Changjiang River, China. Acta Scientiae Circumstantiae, 24,381-388. (in Chinese with English abstract) |
[ 朱广伟, 秦伯强, 高光, 张路, 范成新 (2004). 长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系. 环境科学学报, 24,381-388.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[6] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[7] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[8] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[9] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[10] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[11] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[12] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[13] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[14] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[15] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19