植物生态学报 ›› 2010, Vol. 34 ›› Issue (10): 1125-1131.DOI: 10.3773/j.issn.1005-264x.2010.10.001
所属专题: 青藏高原植物生态学:群落生态学
• 研究论文 • 下一篇
收稿日期:
2010-05-04
接受日期:
2010-07-23
出版日期:
2010-05-04
发布日期:
2010-10-31
通讯作者:
王刚
作者简介:
* E-mail: wgmg36@lzu.edu.cn
ZHANG Jie-Qi, LI Qi, REN Zheng-Wei, YANG Xue, WANG Gang*()
Received:
2010-05-04
Accepted:
2010-07-23
Online:
2010-05-04
Published:
2010-10-31
Contact:
WANG Gang
摘要:
植物种群对有限资源的竞争是决定植物群落物种组成、多样性和生产力等群落结构和功能的主要因素。该文以青藏高原高寒草甸为研究对象, 研究了短期内不同水平的氮素添加对高寒草甸植物群落的影响。结果表明: 1)氮素添加提高了土壤中NO3--N等可利用资源的含量, 增加了植物群落植被的盖度, 减小了植被的透光率, 随着施氮量的增加, 群落中物种丰富度显著降低(p < 0.001); 2)氮素添加显著改变了植物群落的地上生产力(p < 0.05), 随着施氮量的增加, 地上生产力呈先增加后降低的变化趋势, 各功能群中禾草生物量显著增加, 而杂类草和豆科植物生物量随施氮量的增加逐渐减少; 3)物种多样性与植被透光率呈线性正相关(p < 0.05); 地上生产力与土壤NO3--N含量呈线性正相关(p < 0.05); 物种丰富度与地上生产力之间呈负相关关系。这说明短期内氮素添加通过改变土壤中NO3--N等可利用资源的含量而对植物群落物种组成和地上生产力产生影响。
张杰琦, 李奇, 任正炜, 杨雪, 王刚. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 2010, 34(10): 1125-1131. DOI: 10.3773/j.issn.1005-264x.2010.10.001
ZHANG Jie-Qi, LI Qi, REN Zheng-Wei, YANG Xue, WANG Gang. Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1125-1131. DOI: 10.3773/j.issn.1005-264x.2010.10.001
图1 不同氮素水平下土壤pH和NO3--N含量的变化(平均值±标准误差)。 N0、N1、N2和N3指氮素添加量分别为0、11.67、23.34和35.01 g·m-2。不同小写字母代表不同处理间差异显著(p < 0.05)。
Fig. 1 Variation of soil pH and NO3--N content under different nitrogen levels (mean ± SE). N0, N1, N2 and N3 indicate nitrogen addition were 0, 11.67, 23.34 and 35.01 g·m-2, respectively. Different small letters indicate significant difference between treatments at 0.05 level.
图3 不同氮素水平下总个体密度的变化(平均值±标准误差)。 N0、N1、N2、N3见图1。不同小写字母代表不同处理间差异显著(p < 0.05)。
Fig. 3 Variation of total individual density under different nitrogen levels (mean ± SE). N0, N1, N2 and N3 see Fig. 1. Different small letters indicate significant difference between treatments at 0.05 level.
图4 不同氮素水平下地上生产力和功能群生物量占地上生产力百分比的变化(平均值±标准误差)。 A、B、C分别代表杂类草、禾草和豆科植物生物量的百分比。N0、N1、N2、N3见图1。
Fig. 4 Variation of aboveground productivity and functional groups biomass percentage under different nitrogen levels (mean ± SE). A, B, C represent forbs, grasses and legumes biomass percentage, respectively. N0, N1, N2 and N3 see Fig. 1.
[1] | Aerts R, Caluwe DH, Beltman B (2003). Is the relation between nutrient supply and biodiversity co-determined by the type of nutrient limitation? Oikos, 101, 489-498. |
[2] | Al-Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR (1977). A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology, 65, 759-791. |
[3] | Baer SG, Blair JM, Collins SL, Knapp AK (2003). Soil resources regulate productivity and diversity in newly established tallgrass prairie. Ecology, 84, 724-735. |
[4] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372. |
[5] | Butzler JM, Chase JM (2009). The effects of variable nutrient additions on a pond mesocosm community. Hydrobiologia, 617, 65-73. |
[6] | Cornwell WK, Grubb PJ (2003). Regional and local patterns in plant species richness with respect to resource availability. Oikos, 100, 417-428. |
[7] | Facelli JM (1991). Plant litter: its dynamics and effects on plant community structure. The Botanical Review, 57, 1-32. |
[8] | Fridley JD (2003). Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants. Journal of Ecology, 91, 396-406. |
[9] | Goldberg DE, Werner P (1983). Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. American Journal of Botany, 70, 1098-1104. |
[10] | Grime JP (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344-347. |
[11] |
Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
URL PMID |
[12] | Holland EA, Coleman DC (1987). Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology, 68, 425-433. |
[13] | Huberty LE, Gross KL, Miller CJ (1998). Effects of nitrogen addition on successional dynamics and species diversity in Michigan old-fields. Journal of Ecology, 86, 794-803. |
[14] | Jiang XL (江小雷), Zhang WG (张卫国), Yan L (严林), Wang G (王刚) (2004). Effects of plant species diversity on productivity of ecosystem. Acta Prataculturae Sinica (草业学报), 13(6), 8-13. (in Chinese with English abstract) |
[15] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL PMID |
[16] | Li LJ (李禄军), Zeng DH (曾德慧), Yu ZY (于占源), Ai GY (艾桂艳), Yang D (杨丹), Mao R (毛瑢) (2009). Effects of nitrogen addition on grassland species diversity and productivity in Keerqin Sandy. Chinese Journal of Applied Ecology (应用生态学报), 20, 1838-1844. (in Chinese with English abstract) |
[17] | Li SQ (李世清), Li SX (李生秀) (2000). Leaching loss of nitrate from semiarid area agroecosystem. Chinese Journal of Applied Ecology (应用生态学报), 11, 240-242. (in Chinese with English abstract) |
[18] | Loreau M (2000). Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91, 3-17. |
[19] | Luo YJ (罗燕江) (2006). Plant Community Structure During Degradation and Restoration: a Theory Frame and Examples from an Alpine Meadow of Eastern Qinghai-Tibet Plateau (退化和恢复中的植物群落: 以高寒草甸为例的理论和试验研究), PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract) |
[20] | Ma T (马涛), Tong YF (童云峰), Liu JX (刘锦霞), Wu GL (武高林), Liu ZH (刘振恒) (2008). Relationships of species diversity and productivity under the fertilization levels in alpine meadow of the Qinghai-Tibetan Plateau. Grassland and Turf (草原与草坪), 4, 34-38. (in Chinese with English abstract) |
[21] | Marquard E, Weigelt A, Roscher C, Gubsch M, Lipowsky A, Schmid B (2009). Positive biodiversity-productivity relationship due to increased plant density. Journal of Ecology, 97, 696-704. |
[22] | Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001). What is the observed relationship between species richness and productivity? Ecology, 82, 2381-2396. |
[23] | Newman EI (1973). Competition and diversity in herbaceous vegetation. Nature, 244, 310-311. |
[24] | Niu KC, Luo YJ, Choler P, Du GZ (2008). The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 9, 485-493. |
[25] | Qin GL (覃光莲), Du GZ (杜国祯), Li ZZ (李自珍), Yang GY (杨广运), Ma JY (马建云), Niang MJ (娘毛加) (2002). Relationship between productivity and species diversity in alpine meadow plant community. Acta Phytoecologica Sinica (植物生态学报), 26(Suppl.), 57-62. (in Chinese with English abstract) |
[26] | Qiu B (邱波), Luo YJ (罗燕江) (2004). Effects of fertilizer gradients on productivity and species diversity in a degraded alpine meadow. Journal of Lanzhou University (兰州大学学报), 40(3), 56-59. (in Chinese with English abstract) |
[27] | Qiu B (邱波), Luo YJ (罗燕江), Du GZ (杜国祯) (2004). The effect of fertilizer gradients on vegetation characteristics in alpine meadow. Acta Prataculturae Sinica (草业学报), 13(6), 65-68. (in Chinese with English abstract) |
[28] | Ren ZW, Li Q, Chu CJ, Zhao LQ, Zhang JQ, Ai DXC, Yang YB, Wang G (2010). Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 3, 25-31. |
[29] |
Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Elisabeth HS, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
URL PMID |
[30] | Stevens MHH, Carson WP (1999). Plant density determines species richness along an experiment fertility gradient. Ecology, 80, 455-465. |
[31] | Tilman D (1987). Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecological Monographs, 57, 189-214. |
[32] | Tilman D (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, New Jersey, USA. |
[33] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[34] | Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999). The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30, 257-300. |
[35] | Wang XN (王西娜), Wang ZH (王朝辉), Li SX (李生秀) (2007). The effect of nitrogen fertilizer rate on summer maize yield and soil water-nitrogen dynamics. Acta Ecologica Sinica (生态学报), 27, 197-204. (in Chinese with English abstract) |
[36] |
Weiner J (1990). Asymmetric competition in plant populations. Trends in Ecology and Evolution, 5, 360-364.
URL PMID |
[37] | Willems JH, Peer RK, Bik L (1993). Changes in chalk- grassland structure and species richness resulting from selective nutrient additions. Journal of Vegetation Science, 4, 203-212. |
[38] | Wu ZY (吴征镒) (1980). Vegetation of China (中国植被). Science Press, Beijing. (in Chinese) |
[39] | Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439. |
[40] | Yang LM (杨利民), Zhou GS (周广胜), Li JD (李建东) (2002). Relationship between productivity and plant species diversity of grassland communities in Song-Nen Plain of Northeast China. Acta Phytoecologica Sinica (植物生态学报), 26, 589-593. (in Chinese with English abstract) |
[41] | Zhou HK (周华坤), Zhou XM (周兴民), Zhao XQ (赵新全) (2000). A preliminary study of the influence of simulated greenhouse effect on a Kobresia humilis meadow. Acta Phytoecologica Sinica (植物生态学报), 24, 547-553. (in Chinese with English abstract) |
[1] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[2] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[3] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[4] | 黎松松, 王宁欣, 郑伟, 朱亚琼, 王祥, 马军, 朱进忠. 一年生和多年生豆禾混播草地超产与多样性效应的比较[J]. 植物生态学报, 2021, 45(1): 23-37. |
[5] | 杨倩, 王娓, 曾辉. 氮添加对内蒙古退化草地植物群落多样性和生物量的影响[J]. 植物生态学报, 2018, 42(4): 430-441. |
[6] | 王晶, 王姗姗, 乔鲜果, 李昂, 薛建国, 哈斯木其尔, 张学耀, 黄建辉. 氮素添加对内蒙古退化草原生产力的短期影响[J]. 植物生态学报, 2016, 40(10): 980-990. |
[7] | 雒珺瑜, 刘传亮, 张帅, 王春义, 吕丽敏, 李春花, 李付广, 崔金杰. 转RRM2基因棉生长势和产量及对棉田节肢动物群落的影响[J]. 植物生态学报, 2014, 38(7): 785-794. |
[8] | 吴裕鹏, 许涵, 李意德, 骆土寿, 陈德祥, 林明献, 杨怀. 海南尖峰岭热带山地雨林不同空间尺度和径级水平的物种丰富度与个体密度关联[J]. 植物生态学报, 2014, 38(4): 325-333. |
[9] | 李文怀, 郑淑霞, 白永飞. 放牧强度和地形对内蒙古典型草原物种多度分布的影响[J]. 植物生态学报, 2014, 38(2): 178-187. |
[10] | 邓建明, 姚步青, 周华坤, 赵新全, 魏晴, 陈哲, 王文颖. 水氮添加条件下高寒草甸主要植物种氮素吸收分配的同位素示踪研究[J]. 植物生态学报, 2014, 38(2): 116-124. |
[11] | 毛伟, 李玉霖, 崔夺, 赵学勇, 张铜会, 李玉强. 沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J]. 植物生态学报, 2014, 38(2): 125-133. |
[12] | 杨中领, 苏芳龙, 苗原, 钟明星, 肖蕊. 施肥和放牧对青藏高原高寒草甸物种丰富度的影响[J]. 植物生态学报, 2014, 38(10): 1074-1081. |
[13] | 马文静,张庆,牛建明,康萨如拉,刘朋涛,何欣,杨艳,张艳楠,邬建国. 物种多样性和功能群多样性与生态系统生产力的关系——以内蒙古短花针茅草原为例[J]. 植物生态学报, 2013, 37(7): 620-630. |
[14] | 安卓, 牛得草, 文海燕, 杨益, 张洪荣, 傅华. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响[J]. 植物生态学报, 2011, 35(8): 801-807. |
[15] | 池秀莲, 唐志尧. 面积、温度及分布区限制对物种丰富度海拔格局的影响: 以秦岭太白山为例[J]. 植物生态学报, 2011, 35(4): 362-370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19