植物生态学报 ›› 2010, Vol. 34 ›› Issue (10): 1132-1141.DOI: 10.3773/j.issn.1005-264x.2010.10.002
收稿日期:
2009-05-06
接受日期:
2010-01-30
出版日期:
2010-05-06
发布日期:
2010-10-31
通讯作者:
白永飞
作者简介:
* E-mail: yfbai@ibcas.ac.cn
JIANG Ye, BI Xiao-Li, HUANG Jian-Hui, BAI Yong-Fei*()
Received:
2009-05-06
Accepted:
2010-01-30
Online:
2010-05-06
Published:
2010-10-31
Contact:
BAI Yong-Fei
摘要:
草地退化是中国北方草原面临的主要生态问题。该文以1984和2004年草原植被群落调查数据为主要依据, 以优势种、建群种和群落类型及其比例的变化作为主要指标, 并与20世纪80年代的植被类型图比较, 分析了内蒙古锡林河流域草地的退化趋势及其空间分布。根据流域内草地退化的实际情况, 将其分为未退化、轻度退化、中度退化、重度退化和极度退化5种退化类型。另外, 根据近20年前后草地植被变化的实际情况, 又划分了恢复和盐化两个类型。结果表明: 草地退化呈现明显的空间分布, 以锡林河为标志, 总体上从上游到下游退化程度逐渐加剧, 表现为浑善达克沙地进入锡林河的部分及沿河地区为重度退化, 锡林浩特市以北的区域, 尤其是流域的西北部, 已经达到了极度退化; 流域中部的白音锡勒牧场主要是中度退化; 轻度退化则均匀地分布于整个流域; 未退化类型多分布于锡林河的西部, 锡林河中下游地区由于农田退耕、草地围封出现了一定程度的恢复; 锡林浩特市以北沿锡林河植被的盐化程度较重。不同的植被类型退化程度也不同, 沙地灌丛植被轻度退化比例较高, 占植被的43%; 羊茅(Festuca ovina)草原和榆树(Ulmus pumila)疏林沙地中度退化草地的比重较高, 超过50%; 贝加尔针茅(Stipa baicalensis)草原和无芒雀麦(Bromus inermis)杂类草草甸的重度退化面积达50%以上; 极度退化比例较大的有克氏针茅(S. krylovii)草原和小叶锦鸡儿(Caragana microphylla)灌丛化草原。对于羊草(Leymus chinensis)草原, 以轻度和中度退化为主。导致不同区域和不同植被类型草地退化的原因也不尽相同, 从近20年的时间尺度来看, 过度放牧、不合理的居民点布局, 以及道路等是草地退化的主要人为驱动因子。研究结果还显示, 仅以生物量的变化来划分草地退化存在一定的局限性, 因此, 该文以群落优势种和建群种来表征草地的退化类型更具有客观性和实际的应用价值。
姜晔, 毕晓丽, 黄建辉, 白永飞. 内蒙古锡林河流域植被退化的格局及驱动力分析. 植物生态学报, 2010, 34(10): 1132-1141. DOI: 10.3773/j.issn.1005-264x.2010.10.002
JIANG Ye, BI Xiao-Li, HUANG Jian-Hui, BAI Yong-Fei. Patterns and drivers of vegetation degradation in Xilin River Basin, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1132-1141. DOI: 10.3773/j.issn.1005-264x.2010.10.002
植被类型 Vegetation types | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 12 | 13 | 14 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | A | F | F | F | F | ||||||||||
2 | B | B | |||||||||||||
5 | B | B | A | B | F | F | F | F | |||||||
6 | C | C | C | A | F | C | C | F | F | C | |||||
7 | D | D | D | D | D | A | D | D | C | D | D | ||||
8 | C | C | C | C | F | A | C | C | C | F | C | ||||
10 | D | D | D | D | |||||||||||
11 | E | E | E | D | E | E | E | ||||||||
12 | G | G | G | G | G | A | G | ||||||||
14 | D | D | C | D | D | A | |||||||||
15 | D | D | D | D | B | D | D | D | |||||||
16 | C | C | D | ||||||||||||
19 | D |
表1 以植被类型和植物优势种变化为依据的草地退化分类
Table 1 The classification of grassland degradation based on the changes of vegetation types and dominant species
植被类型 Vegetation types | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 12 | 13 | 14 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | A | F | F | F | F | ||||||||||
2 | B | B | |||||||||||||
5 | B | B | A | B | F | F | F | F | |||||||
6 | C | C | C | A | F | C | C | F | F | C | |||||
7 | D | D | D | D | D | A | D | D | C | D | D | ||||
8 | C | C | C | C | F | A | C | C | C | F | C | ||||
10 | D | D | D | D | |||||||||||
11 | E | E | E | D | E | E | E | ||||||||
12 | G | G | G | G | G | A | G | ||||||||
14 | D | D | C | D | D | A | |||||||||
15 | D | D | D | D | B | D | D | D | |||||||
16 | C | C | D | ||||||||||||
19 | D |
贝加尔草甸草原 Stipa baicalensis meadow steppe | 羊草草甸草原 Leymus chinensis meadow steppe | 克氏针茅典型草原 Stipa krylovii typical steppe | 羊草典型草原 Leymus chinensis typical steppe | 冷蒿典型草原 Artemisia frigida typical steppe | 小叶锦鸡儿典型草原 Caragana microphylla typical steppe | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
年代 Year | 2004 | 1984 | 2004 | 1984 | 2004 | 1984 | 2004 | 1984 | 2004 | 1984 | 2004 | 1984 |
n | 25 | 7 | 8 | 12 | 93 | 15 | 112 | 49 | 41 | 23 | 23 | 7 |
均值 Mean | 231.38 | 115.04 | 193.32 | 177.48 | 140.93 | 104.01 | 143.67 | 149.96 | 155.11 | 99.74 | 104.4 | 92.98 |
SD | 79.44 | 21.70 | 44.06 | 54.37 | 75.14 | 36.72 | 75.58 | 55.3 | 76.43 | 33.96 | 77.83 | 51.84 |
SE | 15.89 | 8.20 | 15.58 | 15.69 | 7.79 | 9.48 | 7.14 | 7.90 | 11.94 | 7.08 | 16.23 | 19.59 |
F | 9.31 | 0.01 | 7.20 | 6.01 | 7.55 | 1.75 | ||||||
p | 0.00** | 0.89 | 0.01* | 0.01* | 0.01* | 0.19 |
表2 1984年和2004年不同植被类型的生物量的差异(g·m-2)
Table 2 Difference between aboveground biomass for different vegetation types in 1984 and 2004 (g·m-2)
贝加尔草甸草原 Stipa baicalensis meadow steppe | 羊草草甸草原 Leymus chinensis meadow steppe | 克氏针茅典型草原 Stipa krylovii typical steppe | 羊草典型草原 Leymus chinensis typical steppe | 冷蒿典型草原 Artemisia frigida typical steppe | 小叶锦鸡儿典型草原 Caragana microphylla typical steppe | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
年代 Year | 2004 | 1984 | 2004 | 1984 | 2004 | 1984 | 2004 | 1984 | 2004 | 1984 | 2004 | 1984 |
n | 25 | 7 | 8 | 12 | 93 | 15 | 112 | 49 | 41 | 23 | 23 | 7 |
均值 Mean | 231.38 | 115.04 | 193.32 | 177.48 | 140.93 | 104.01 | 143.67 | 149.96 | 155.11 | 99.74 | 104.4 | 92.98 |
SD | 79.44 | 21.70 | 44.06 | 54.37 | 75.14 | 36.72 | 75.58 | 55.3 | 76.43 | 33.96 | 77.83 | 51.84 |
SE | 15.89 | 8.20 | 15.58 | 15.69 | 7.79 | 9.48 | 7.14 | 7.90 | 11.94 | 7.08 | 16.23 | 19.59 |
F | 9.31 | 0.01 | 7.20 | 6.01 | 7.55 | 1.75 | ||||||
p | 0.00** | 0.89 | 0.01* | 0.01* | 0.01* | 0.19 |
植被类型 Vegetation type | 盐化 Salinized | 未退化 Non-degraded | 轻度退化 Slightly degraded | 中度退化 Moderate degraded | 重度退化 Heavily degraded | 极度退化 Extremely degraded | 恢复 Restored |
---|---|---|---|---|---|---|---|
1 | 0 | 20 | 0 | 20 | 60 | 0 | 0 |
2 | 6 | 42 | 25 | 15 | 9 | 3 | 0 |
3 | 0 | 0 | 11 | 56 | 22 | 0 | 0 |
4 | 50 | 0 | 0 | 1 | 50 | 0 | 0 |
5 | 0 | 25 | 15 | 31 | 20 | 8 | 0 |
6 | 3 | 28 | 36 | 5 | 15 | 13 | 0 |
7 | 4 | 2 | 0 | 45 | 17 | 13 | 19 |
8 | 0 | 33 | 23 | 3 | 17 | 23 | 0 |
9 | 0 | 0 | 15 | 77 | 8 | 0 | 0 |
12 | 0 | 48 | 0 | 24 | 14 | 14 | 0 |
13 | 67 | 0 | 0 | 33 | 0 | 0 | 0 |
14 | 0 | 19 | 6 | 36 | 19 | 21 | 0 |
16 | 10 | 0 | 0 | 5 | 43 | 0 | 43 |
17 | 0 | 0 | 44 | 56 | 0 | 0 | 0 |
表3 2004年不同植被类型的退化程度所占的比例(%)
Table 3 Percentage of the degraded grassland across different vegetation types in 2004 (%)
植被类型 Vegetation type | 盐化 Salinized | 未退化 Non-degraded | 轻度退化 Slightly degraded | 中度退化 Moderate degraded | 重度退化 Heavily degraded | 极度退化 Extremely degraded | 恢复 Restored |
---|---|---|---|---|---|---|---|
1 | 0 | 20 | 0 | 20 | 60 | 0 | 0 |
2 | 6 | 42 | 25 | 15 | 9 | 3 | 0 |
3 | 0 | 0 | 11 | 56 | 22 | 0 | 0 |
4 | 50 | 0 | 0 | 1 | 50 | 0 | 0 |
5 | 0 | 25 | 15 | 31 | 20 | 8 | 0 |
6 | 3 | 28 | 36 | 5 | 15 | 13 | 0 |
7 | 4 | 2 | 0 | 45 | 17 | 13 | 19 |
8 | 0 | 33 | 23 | 3 | 17 | 23 | 0 |
9 | 0 | 0 | 15 | 77 | 8 | 0 | 0 |
12 | 0 | 48 | 0 | 24 | 14 | 14 | 0 |
13 | 67 | 0 | 0 | 33 | 0 | 0 | 0 |
14 | 0 | 19 | 6 | 36 | 19 | 21 | 0 |
16 | 10 | 0 | 0 | 5 | 43 | 0 | 43 |
17 | 0 | 0 | 44 | 56 | 0 | 0 | 0 |
盐化Salinized | 未退化 Non-degraded | 轻度退化 Slightly degraded | 中度退化 Moderate degraded | 重度退化 Heavily degraded | 极度退化 Extremely degraded | 恢复 Restored | |
---|---|---|---|---|---|---|---|
均值 Mean | 140.10 | 186.27 | 185.12 | 142.30 | 118.58 | 108.55 | 220.82 |
n | 16 | 94 | 119 | 83 | 97 | 43 | 19 |
SE | 22.80 | 11.72 | 8.71 | 7.30 | 7.85 | 15.86 | 28.23 |
SD | 91.52 | 113.66 | 95.04 | 66.51 | 77.34 | 104.00 | 123.07 |
表4 2004年不同退化草地类型地上生物量的分布(干重, g·m-2)
Table 4 Distribution of aboveground biomass for different types of degraded grasslands in 2004 (dry weight, g·m-2)
盐化Salinized | 未退化 Non-degraded | 轻度退化 Slightly degraded | 中度退化 Moderate degraded | 重度退化 Heavily degraded | 极度退化 Extremely degraded | 恢复 Restored | |
---|---|---|---|---|---|---|---|
均值 Mean | 140.10 | 186.27 | 185.12 | 142.30 | 118.58 | 108.55 | 220.82 |
n | 16 | 94 | 119 | 83 | 97 | 43 | 19 |
SE | 22.80 | 11.72 | 8.71 | 7.30 | 7.85 | 15.86 | 28.23 |
SD | 91.52 | 113.66 | 95.04 | 66.51 | 77.34 | 104.00 | 123.07 |
图2 锡林河流域不同年代(1970-2004)载畜量的空间分布(羊单位·km-2)。
Fig. 2 Spatial distribution of grazing capacity sheep units (SU) in the Xilin River Basin during 1970-2004 (SU·km-2).
[1] | Bai YF (白永飞), Li LH (李凌浩), Wang QB (王其兵), Zhang LX (张丽霞), Zhang Y (张炎), Chen ZZ (陈佐忠) (2000). Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica (植物生态学报), 24, 667-673. (in Chinese with English abstract) |
[2] | Cao X (曹鑫), Gu ZH (辜智慧), Chen J (陈晋), Liu J (刘晋), Shi PJ (史培军) (2006). Analysis of human induced steppe degradation based on remote sensing in Xilingole, Inner Mongolia, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 268-277. (in Chinese with English abstract) |
[3] | Chen ZZ (陈佐忠) (1988). Topography and climate of Xilin River Basin. In: Inner Mongolia Grassland Ecosystem Research Station, Chinese Academy of Sciences ed. Research on Grassland Ecosystem No.3 (草原生态系统研究第三册). Science Press, Beijing. 13-20. (in Chinese) |
[4] | Christensen L, Coughenour MB, Ellis JE, Chen ZZ (2004). Vulnerability of the Asian typical steppe to grazing and climate change. Climatic Change, 63, 351-368. |
[5] | Del Valle HF, Elissalde NO, Gagliardini DA, Milovich J (1998). Status of desertification in the Patagonian region: assessment and mapping from satellite imagery. Arid Land Research and Management, 12, 95-121. |
[6] | Fernando S, Gong P, Manuel F (2005). Land cover assessment with MODIS imagery in southern African Miombo ecosystems. Remote Sensing of Environment, 98, 429-441. |
[7] | Geerken R, Ilaiwi M (2004). Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sensing of Environment, 90, 490-504. |
[8] | Hou FJ (侯扶江), Yang ZY (杨中艺) (2006). Effects of grazing of livestock on grassland. Acta Ecologica Sinica (生态学报), 6, 244-264. (in Chinese with English abstract) |
[9] | Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang SP (2005). Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agriculture, Ecosystems & Environment, 107, 83-93. |
[10] | Li B (李博) (1997). Steppe degradation and its prevention in North China. Scientia Agricultura Sinica (中国农业科学), 3(6), 1-9. (in Chinese with English abstract) |
[11] | Li B (李博) (2000). Ecology (生态学). Higher Education Press, Beijing. 270-276. (in Chinese) |
[12] | Li B (李博), Yong SP (雍世鹏), Li ZH (李忠厚) (1988). The vegetation of the Xilin River Basin and its utilization. In: Inner Mongolia Grassland Ecosystem Research Station, Chinese Academy of Sciences ed. Research on Grassland Ecosystem No.3 (草原生态系统研究第三册). Science Press, Beijing. (in Chinese) |
[13] | Li JH (李金花), Pan HW (潘浩文), Wang G (王刚) (2004). Degradation causes of typical steppe in Inner Mongolia. Pratacutural Science (草业科学), 21(5), 49-51. (in Chinese with English abstract) |
[14] | Li XB (李晓兵), Shi PJ (史培军) (2000). Sensitivity analysis on variation in NDVI, temperature and precipitation in typical vegetation types across China. Acta Phytoecologica Sinica (植物生态学报), 24, 379-382. (in Chinese with English abstract) |
[15] | Li YP (李银鹏), Ji JJ (季劲钧) (2004). Assessment of the productivity and livestock carrying capacity of Inner Mongolia grassland by regional scale modeling. Journal of Natural Resources (自然资源学报), 19, 610-616. (in Chinese with English abstract) |
[16] | Mcintyre S, Iavoeri S, Iandsberg J (1999). Disturbance response in vegetation: towards global perspective on functional traits. Journal of Vegetation Science, 10, 621-630. |
[17] | Tong C (仝川), Yang JR (杨景荣), Yong WY (雍伟义), Yong SP (雍世鹏) (2002). Spatial pattern of steppe degradation in Xilin River Basin of Inner Mongolia. Journal of Natural Resources (自然资源学报), 17, 571-578. (in Chinese with English abstract) |
[18] | Tong C, Wu J, Yong S, Yang J, Yong W (2004). A landscape scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 59, 133-149. |
[19] | Wang JW (汪久文), Cai WQ (蔡蔚祺) (1988). Study on genesis, types and characteristics of the soils of the Xilin River Basin. In: Inner Mongolia Grassland Ecosystem Research Station, Chinese Academy of Sciences ed. Research on Grassland Ecosystem No.3 (草原生态系统研究第三册) Science Press, Beijing. 23-83. (in Chinese) |
[20] | Wang SP (汪诗平), Li YH (李永宏), Chen ZZ (陈佐忠) (1999). The optimal stocking rate on grazing system in Inner Mongolia steppe. II. Based on relationship between stocking rate and aboveground net primary productivity. Acta Agrestia Sinica (草地学报), 7, 192-197. (in Chinese with English abstract) |
[21] | Zhao BR (赵冰茹), Liu C (刘闯), Wang JJ (王晶杰), Chen WB (陈文波) (2004). Spatial and temporal change of MODIS- NDVI in Xilinguole grassland. Grassland of China (中国草地), 26, 1-8. (in Chinese with English abstract) |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[3] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[4] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[5] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[6] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[7] | 王国宏, 郭柯, 谢宗强, 唐志尧, 蒋延玲, 方精云. 《中国植被志》研编规范的若干说明、补充与修订[J]. 植物生态学报, 2022, 46(3): 368-372. |
[8] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[9] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[10] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[11] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[12] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[13] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[14] | 牟利, 吴林, 刘雪飞, 李小玲, 王涵, 吴浩, 余玉蓉, 杜胜蓝. 鄂西南亚高山不同覆被类型泥炭藓沼泽湿地甲烷排放特征及其环境影响因子[J]. 植物生态学报, 2021, 45(2): 131-143. |
[15] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19