植物生态学报 ›› 2010, Vol. 34 ›› Issue (11): 1243-1253.DOI: 10.3773/j.issn.1005-264x.2010.11.001
所属专题: 生态系统碳水能量通量
• 研究论文 • 下一篇
高波1,2, 张卫信1,3, 刘素萍1,3, 邵元虎1,3, 熊燕梅1,3, 周存宇2, 傅声雷1,3,*()
收稿日期:
2010-01-11
接受日期:
2010-05-27
出版日期:
2010-01-11
发布日期:
2010-10-31
通讯作者:
傅声雷
作者简介:
(E-mail: sfu@scbg.ac.cn)
GAO Bo1,2, ZHANG Wei-Xin1,3, LIU Su-Ping1,3, SHAO Yuan-Hu1,3, XIONG Yan-Mei1,3, ZHOU Cun-Yu2, FU Sheng-Lei1,3,*()
Received:
2010-01-11
Accepted:
2010-05-27
Online:
2010-01-11
Published:
2010-10-31
Contact:
FU Sheng-Lei
摘要:
西土寒宪蚓(Ocnerodrilus occidentalis)为广东人工林和撂荒地内广泛分布的外来种蚯蚓, 因其对水热、pH值及土壤有机质等的变化不敏感, 其分布范围有逐渐扩大的趋势。研究西土寒宪蚓对人工林碳循环的影响过程, 可以为如何减少外来蚯蚓影响下的人工林土壤碳排放提供思路。在广东鹤山大叶相思(Acacia auriculaeformis)人工林内设置外来蚯蚓和乡土植物野外控制实验, 利用静态箱-气相色谱法对土壤CO2通量进行15天的原位测定。结果发现, 单独添加西土寒宪蚓及单独种植三叉苦(Evodia lepta), 对土壤CO2通量的效应都不明显。植物物理过程(如遮阴作用等)、植物生物过程(如根际化学物质分泌过程等)及植物在未添加蚯蚓样方和添加蚯蚓样方中对土壤CO2通量的效应分别为-32.1%、40.9%、8.8%和-7.2%、30.7%、23.5%。植物的物理过程抑制了土壤CO2排放, 但提高了蚯蚓对土壤CO2排放的促进作用(提高了39.3%)。植物的生物过程促进了土壤CO2排放, 但减弱了蚯蚓对土壤CO2排放的促进作用(降低了23.5%)。试验期间蚯蚓对多数土壤理化性质的影响并不明显, 但是蚯蚓的存在有增强土壤细菌活性的趋势, 而且使土壤CO2通量与土壤理化性质的相关性更加密切了; 同时, 蚯蚓的存在也使土壤CO2通量与土壤水热因子的关系发生了变化。可见, 森林土壤CO2通量不仅与水热条件有关, 还受地上和地下生物过程的调控。如果只关注森林土壤CO2通量的大小, 而忽略影响土壤CO2产生及释放的生物学过程, 将无法找到减少森林土壤CO2排放的有效途径。减缓人工林中土壤碳的排放, 必须综合考虑植物物理过程、植物生物过程以及蚯蚓对土壤CO2排放过程的独立效应和交互效应。
高波, 张卫信, 刘素萍, 邵元虎, 熊燕梅, 周存宇, 傅声雷. 西土寒宪蚓和三叉苦植物对大叶相思人工林土壤CO2通量的短期效应. 植物生态学报, 2010, 34(11): 1243-1253. DOI: 10.3773/j.issn.1005-264x.2010.11.001
GAO Bo, ZHANG Wei-Xin, LIU Su-Ping, SHAO Yuan-Hu, XIONG Yan-Mei, ZHOU Cun-Yu, FU Sheng-Lei. Short-term impacts of Ocnerodrilus occidentalis and Evodia lepta on soil CO2 fluxes in an Acacia auriculaeformis plantation in Guangdong Province, China. Chinese Journal of Plant Ecology, 2010, 34(11): 1243-1253. DOI: 10.3773/j.issn.1005-264x.2010.11.001
回归方程 Regression equation | b0 | b1 | b2 | b3 | b4 | b5 | p | R2 | |
---|---|---|---|---|---|---|---|---|---|
CO2通量 CO2 flus | y (B) | 484.2 | 2 479.3 | -114.8 | 6.39 | -9.55 | -92.56 | 0.052 | 0.47 |
y (A) | 2 360.1 | 917.3 | -4.80 | 4.27 | -28.23 | -573.5 | 0.046 | 0.50 |
表2 土壤CO2通量与土壤理化因素之间关系的回归模型(y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5)
Table 2 Regression models for the relationship between soil carbon dioxide fluxes and soil physical and chemical characteristics (y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5)
回归方程 Regression equation | b0 | b1 | b2 | b3 | b4 | b5 | p | R2 | |
---|---|---|---|---|---|---|---|---|---|
CO2通量 CO2 flus | y (B) | 484.2 | 2 479.3 | -114.8 | 6.39 | -9.55 | -92.56 | 0.052 | 0.47 |
y (A) | 2 360.1 | 917.3 | -4.80 | 4.27 | -28.23 | -573.5 | 0.046 | 0.50 |
图1 不同处理下土壤CO2通量的比较(平均值±标准误差, n = 56)。不同字母表示不同处理在p < 0.05水平上的差异显著。CK, 对照; CK + E, 添加西土寒宪蚓; FP, 种植假植物; FP + E, 种植假植物并添加西土寒宪蚓; P, 种植植物; P + E, 种植植物并添加西土寒宪蚓。
Fig. 1 Comparison of soil carbon dioxide fluxes under different treatments (mean ± SE, n = 56). Different letters on column indicate significant differences (p < 0.05) between treatments, which were performed by two-way ANOVA analysis. CK, control; CK + E, plot with earthworm; FP, plot with fake plant; FP + E, plot with fake plant and earthworm; P, plot with plant; P + E, plot with plant and earthworm.
图2 不同处理土壤CO2通量的时间动态(平均值±标准误差)。CK、CK + E、FP、FP + E、P和P + E同图1。
Fig. 2 Temporal dynamics of soil carbon dioxide fluxes under different treatments (mean ± SE). CK, CK + E, FP, FP + E, P and P + E see Fig. 1.
无西土寒宪蚓 Without Ocnerodrilus occidentalis | 有西土寒宪蚓 With O. occidentalis | 蚯蚓效应 Earthworm effects | |
---|---|---|---|
植物物理效应 Physical effect of plant | (FP - CK)/CK × 100 | (FPE - CKE)/CKE × 100 | (FPE - FP)/FP × 100 |
植物生物效应 Biological effect of plant | (P - FP)/CK × 100 | (PE - FPE)/CKE × 100 | [(PE - P)-(FPE - FP)]/(P - FP) × 100 |
植物总效应 Plant effects | (P - CK)/CK × 100 | (PE - CKE)/CKE × 100 | (PE - P)/P × 100 |
对照土壤 Control soil | - | - | (CKE - CK)/CK × 100 |
表1 西土寒宪蚓及植物对土壤CO2通量效应的计算公式(%)
Table 1 Formulas of earthworm and plant effects on soil carbon dioxide fluxes (%)
无西土寒宪蚓 Without Ocnerodrilus occidentalis | 有西土寒宪蚓 With O. occidentalis | 蚯蚓效应 Earthworm effects | |
---|---|---|---|
植物物理效应 Physical effect of plant | (FP - CK)/CK × 100 | (FPE - CKE)/CKE × 100 | (FPE - FP)/FP × 100 |
植物生物效应 Biological effect of plant | (P - FP)/CK × 100 | (PE - FPE)/CKE × 100 | [(PE - P)-(FPE - FP)]/(P - FP) × 100 |
植物总效应 Plant effects | (P - CK)/CK × 100 | (PE - CKE)/CKE × 100 | (PE - P)/P × 100 |
对照土壤 Control soil | - | - | (CKE - CK)/CK × 100 |
图3 各处理土壤理化性质比较。*, 处理间差异达到显著水平(p < 0.05)。CK、CK + E、FP、FP + E、P、P + E同图1。
Fig. 3 The physical and chemical properties of surface soil under different treatments. *, difference between treatments was significant (p < 0.05). CK, CK + E, FP, FP + E, P, P + E see Fig.1.
处理 | b0 | b1 | b2 | b3 | b4 | p | R2 |
---|---|---|---|---|---|---|---|
CK | 122 412 | 0.098 | -0.165 | -0.704 | -0.557 | 0.000 | 0.55 |
CK + E | 675 | 0.027 | 0.013 | -0.658 | 0.203 | 0.429 | 0.07 |
FP | 2913 | -0.189 | 0.212 | -0.789 | 0.144 | 0.075 | 0.16 |
FP + E | 98 | 0.140 | -0.110 | -0.330 | 0.281 | 0.053 | 0.20 |
P | 5209 | -0.069 | 0.111 | -0.567 | -0.387 | 0.000 | 0.34 |
P + E | 2 | 0.118 | -0.034 | 0.570 | -0.005 | 0.034 | 0.19 |
表3 土壤CO2通量与地表温度、湿度和土壤5 cm处温度及0-5 cm土壤平均湿度之间关系的回归模型(y = b0e(b1T0 + b2T5)W0b3W5b4) (n = 56)
Table 3 Regression models for the relationship between soil carbon dioxide fluxes, soil surface temperature and moisture & soil 5 cm temperature and moisture content (0-5 cm) under different treatments (y = b0e(b1T0 + b2T5)W0b3W5b4) (n = 56)
处理 | b0 | b1 | b2 | b3 | b4 | p | R2 |
---|---|---|---|---|---|---|---|
CK | 122 412 | 0.098 | -0.165 | -0.704 | -0.557 | 0.000 | 0.55 |
CK + E | 675 | 0.027 | 0.013 | -0.658 | 0.203 | 0.429 | 0.07 |
FP | 2913 | -0.189 | 0.212 | -0.789 | 0.144 | 0.075 | 0.16 |
FP + E | 98 | 0.140 | -0.110 | -0.330 | 0.281 | 0.053 | 0.20 |
P | 5209 | -0.069 | 0.111 | -0.567 | -0.387 | 0.000 | 0.34 |
P + E | 2 | 0.118 | -0.034 | 0.570 | -0.005 | 0.034 | 0.19 |
图4 不同处理磷脂脂肪酸总量、真菌细菌比、真菌和细菌磷脂脂肪酸量及细菌胁迫指数比较(平均值±标准误差)。CK、CK + E、FP、FP + E、P、P + E同图1。
Fig. 4 Comparisons of total phospholipids fatty acids (PLFAs), Fungi : bacteria ratio, fungal PLFAs, bacteria PLFAs and bacteria stress index under different treatments (mean ± SE). CK, CK + E, FP, FP + E, P, P + E see Fig. 1.
图5 蚯蚓及植物对土壤CO2通量作用效应简图。+, 对CO2通量的正效应; –, 对CO2通量的负效应; 0, 无效应或效应很弱; ?, 未知作用过程。
Fig. 5 Mechanistic diagram of earthworm and plant effects and their interaction on soil carbon dioxide flux. +, positive effects; –, negative effects; 0, no effect or weak effect; ?, unknown process.
[1] | Bohlen PJ, Parmelee RW, Blair JM, Edwards CA, Stinner BR (1995). Efficacy of methods for manipulating earthworm populations in large-scale field experiments in agroecosystems. Soil Biology and Biochemistry, 27, 993-999. |
[2] |
Borken W, Gründel S, Beese F (2000). Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biology and Fertility of Soils, 32, 142-148.
DOI URL |
[3] |
Burton AJ, Pregitzer KS (2003). Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiology, 23, 273-280.
URL PMID |
[4] |
Bouwmann AF, Germon JC (1998). Introduction. Biology and Fertility of Soils, 27, 219.
DOI URL |
[5] |
Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227.
DOI URL |
[6] |
Dejong E, Schappert HJV, Macdonald KB (1974). Carbon dioxide evolution from virgin and cultivated soil as affected by management practices and climate. Canadian Journal of Soil Science, 54, 299-307.
DOI URL |
[7] |
de Deyn GB, Cornelissen JHC, Bardgett RD (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516-531.
URL PMID |
[8] |
Dickens HE, Anderson JM (1999). Manipulation of soil microbial community structure in bog and forest soils using chloroform fumigation. Soil Biology and Biochemistry, 31, 2049-2058.
DOI URL |
[9] |
Frostegård A, Bååth E, Tunlid A (1993). Shift in the structure of soil microbial communities in limed forests as revealed by phospolipid fatty acid analysis. Soil Biology and Biochemistry, 25, 723-730.
DOI URL |
[10] |
Frostegård A, Bååth E (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65.
DOI URL |
[11] |
Gao B (高波), Fu SL (傅声雷), Zhang WX (张卫信), Liu SP (刘素萍), Zhou CY (周存宇 ) (2010). Short-term effects of earthworm and evodia lepta on soil N2O and CH4 fluxes in a subtropical plantation. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 18, 364-371. (in Chinese with English abstract)
DOI URL |
[12] |
Groffman PM, Bohlen PJ, Fisk MC, Fahey TJ (2004). Exotic earthworm invasion and microbial biomass in temperate forest soils. Ecosystems, 7, 45-54.
DOI URL |
[13] |
Grogan DW, Cronan JE (1997). Cyclopropane ring formation in membrane lipids of bacteria. Microbiology and Molecular Biology Reviews, 61, 429-441.
URL PMID |
[14] |
Jia BR, Zhou GS, Wang FY, Wang YH, Yuan WP, Zhou L (2006). Partitioning root and microbial contributions to soil respiration in Leymus chinensis populations. Soil Biology and Biochemistry, 38, 653-660.
DOI URL |
[15] |
Keith H, Jacobsen KL, Raison RJ (1997). Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant and Soil, 190, 127-141.
DOI URL |
[16] |
Kretzschmar A, Ladd JN (1993). Decomposition of 14C-labelled plant material in soil: the influence of substrate location, soil compaction and earthworm numbers . Soil Biology and Biochemistry, 25, 803-809.
DOI URL |
[17] |
Kristufek V, Ravasz K, Pizl V (1992). Changes in densities of bacteria and microfungi during gut transit in Lumbricas rubellus and Aporrectodea caliginosa(Oligochaeta: Lumbricidae). Soil Biology and Biochemistry, 24, 1499-1500.
DOI URL |
[18] |
Li HF (李海防), Xia HP (夏汉平), Fu SL (傅声雷), Zhang XF (张杏锋 ) (2009). Emissions of soil greenhouse gases in response to understory removal and Cassia alata addition in a Eucalyptus urophylla plantation in Guangdong Province, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1015-1022. (in Chinese with English abstract)
DOI URL |
[19] | Liu GS (刘光崧), Jiang NH (蒋能慧), Zhang LD (张连第), Liu ZL (刘兆礼 ) (1996). Soil Physical and Chemical Analysis & Description of Soil Profiles (土壤理化分析与剖面描述). Standards Press of China, Beijing. (in Chinese) |
[20] | Pedersen JC, Hendriksen NB (1993). Effect of passage through the intestinal tract of detritivore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacteria. Biology and Fertility of Soils, 16, 227-232. |
[21] | Raich JW, Bowden RD, Steudler PA (1990). Comparison of two static chamber techniques for determining carbon dioxide efflux from forest soil. Soil Science Society of America Journal, 54, 1754-1757. |
[22] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99. |
[23] | Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005). Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters, 8, 811-818. |
[24] | Schlesinger WH (1997). Biogeochemistry: an Analysis of Global Change. Academic Press, New York. |
[25] | Speratti AB, Whalen JK (2008). Carbon dioxide and nitrous oxide fluxes from soil as influenced by anecic and endogeic earthworms. Applied Soil Ecology, 38, 27-33. |
[26] | Staaf H (1987). Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types. Oecologia, 72, 58-64. |
[27] | Tian G, Olimah JA, Adeoye GO, Kang BT (2000). Regenera- tion of earthworm populations in a degraded soil by natural, planted fallows under humid tropical conditions. Soil Science Society of America Journal, 64, 222-228. |
[28] | Waldrop MP, Firestone MK (2004). Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia, 138, 275-284. |
[29] | Wang YS, Wang YH (2003). Quick measurement of CH4, CO2 and N2O emission from a short-plant ecosystem. Advances in Atmospheric Sciences, 20, 842-844. |
[30] | Wessells MLS, Bohlen PJ, McCartney DA, Subler S, Edwards CA (1997). Earthworm effects on soil respiration in corn agroecosystems receiving different nutrient inputs. Soil Biology and Biochemistry, 29, 409-412. |
[31] | Xu M, Qi Y (2001). Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677. |
[32] | Zhang WX (张卫信), Li JX (李健雄), Guo MF (郭明昉), Liao CH (廖崇惠 ) (2005). Seasonal variation of earthworm community structure as correlated with environmental factors in three plantations of Heshan, Guangdong, China. Acta Ecologica Sinica (生态学报), 25, 1362-1370. (in Chinese with English abstract) |
[33] | Zerva A, Mencuccini M (2005). Short-term effects of clear felling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation. Soil Biology and Biochemistry, 37, 2025-2036. |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[4] | 张雨鉴, 刘艳红. 林火干扰下的树木生理及主要影响因素[J]. 植物生态学报, 2024, 48(3): 269-286. |
[5] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[6] | 李柳, 刘庆华, 尹春英. 植物硒生物强化及微生物在其中的应用潜力[J]. 植物生态学报, 2023, 47(6): 756-769. |
[7] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[8] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[9] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[10] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[11] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[12] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[13] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[14] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[15] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19