植物生态学报 ›› 2006, Vol. 30 ›› Issue (5): 868-877.DOI: 10.17521/cjpe.2006.0110
收稿日期:
2006-02-06
接受日期:
2006-03-20
出版日期:
2006-02-06
发布日期:
2006-09-30
通讯作者:
张大勇
作者简介:
E-mail: zhangdy@bnu.edu.cn基金资助:
ZHOU Shu-Rong1,2, ZHANG Da-Yong1,*()
Received:
2006-02-06
Accepted:
2006-03-20
Online:
2006-02-06
Published:
2006-09-30
Contact:
ZHANG Da-Yong
摘要:
生物多样性的分布格局和维持机制一直是群落生态学研究的核心问题,其中的关键是物种的共存机制。长期以来,生态位分化的思想在这一研究领域占据着主导地位。然而这一理论在解释热带雨林很高的物种多样性时遇到了困难。而以Hubbell为代表提出的群落中性漂变理论则假定在同一营养级物种构成的群落中不同物种的不同个体在生态学上可看成是完全等同的;物种的多度随机游走,群落中的物种数取决于物种灭绝和物种迁入/新物种形成之间的动态平衡。在这一假定之下,该理论预言了两种统计分布。一种是集合群落在点突变形成新物种的模式下其各个物种相对多度服从对数级数分布,而受扩散限制的局域群落以及按照随机分裂为新物种模式形成的集合群落则服从零和多项式分布。与生态位理论相反,中性理论不以种间生态位差异作为研究群落结构的出发点,而是以物种间在个体水平上的对等性作为前提。该理论第一次从基本生态学过程(出生、死亡、迁移、物种分化)出发,给出了群落物种多度分布的机理性解释,同时其预测的物种多度分布格局在实际群落中也得到了广泛的印证。因此,中性理论自诞生以来便在生态学界引发了极大的反响,也包括一些反对的声音。该文重点综述了关于中性理论的假设、预测和物种形成模式等方面的最新研究进展,包括中性理论本身的发展、关于中性理论的假设和预测的合理性检验以及在集合群落尺度上物种分化模式的讨论;并指出未来发展方向可能是在生态位理论和中性理论之间架起一座桥梁,同时发展包含随机性的群落生态位模型,以及允许种间差异的近中性模型。
周淑荣, 张大勇. 群落生态学的中性理论. 植物生态学报, 2006, 30(5): 868-877. DOI: 10.17521/cjpe.2006.0110
ZHOU Shu-Rong, ZHANG Da-Yong. NEUTRAL THEORY IN COMMUNITY ECOLOGY. Chinese Journal of Plant Ecology, 2006, 30(5): 868-877. DOI: 10.17521/cjpe.2006.0110
图1 不同群落中的物种相对多度分布模式 群落中的物种按照其相对多度从大(左)到小(右)排列。Y轴采用对数刻度,表示物种相对多度的百分值 Species in each community are ranked in percentage relative abundance from the commonest (left) to the rarest (right). The percentage relative abundance is log transformed on the y-axis 1. 亚马逊潮湿的热带雨林 Tropical rain forest in Amazonia 2.哥斯达黎加的热带干燥落叶林 Tropical dry deciduous forest in Costa Rica 3.北太平洋旋涡的海洋桡脚类浮游生物群落 Marine planktonic copepod community from the North Pacific gyre 4.英国的陆地鸟类群落 Terrestrial breeding birds of Britain 5.巴拿马热带蝙蝠群落 (引自Hubbell, 2001) Tropical bat community from Panama (from Hubbell, 2001)
Fig.1 Patterns of relative species abundance in a diverse array of ecological communities
图2 中性模型对沙捞越Lambir山地国家公园内热带树种群落优势度-多样性曲线的拟合 点虚线是θ=310且没有扩散限制(m=1)的集合群落最佳拟合。52 km2样地的树木群落的相对丰富度数据的最佳拟合是θ=310和m=0.15。误差条是±标准差。粗线是观测到的优势度-多样性曲线。中性模型对实测数据的1 197个种拟合得非常好(r2=0.996)(引自Hubbell 2006)
Fig.2 The fit of the UNT to the dominance-diversity curve for the tropical tree community in Lambir Hills National Park, Sarawak (Borneo) The dotted line extending diagonally down to the right is the best-fit metacommunity curve for θ=310 assuming no dispersal limitation (m=1). The distribution of relative tree species abundance for the 52 ha plot was best fit with θ=310 and m=0.15. The error bars are ± one standard deviation. The heavy solid line is the observed dominance-diversity curve. The agreement between the fitted line and the observed line for 1 197 species excellent (r 2 = 0.996) (from Hubbell 2006)
[1] | Alonso D, McKane AJ (2004). Sampling Hubbell's neutral theory of biodiversity. Ecology Letters, 7,901-910. |
[2] | Armstrong RA (1989). Competition, seed predation, and species coexistence. Journal of Theoretical Biology, 141,191-195. |
[3] | Bell G (2000). The distribution of abundance in neutral communities. American Naturalist, 155,606-617. |
[4] | Bell G (2001). Neutral macroecology. Science, 293,2413-2418. |
[5] | Chave J (2004). Neutral theory and community ecology. Ecology Letters, 7,241-253. |
[6] |
Chave J, Leigh EG (2002). A spatially explicit neutral model of beta-diversity in tropical forests. Theoretical Population Biology, 62,153-168.
DOI URL PMID |
[7] | Chave J, Muller-Landau HC, Levin SA (2002). Comparing classical community models: theoretical consequences for patterns of diversity. American Naturalist, 159,1-23. |
[8] | Chesson P (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31,343-366. |
[9] |
Clark JS, MacLachlan JS (2003). Stability of forest biodiversity. Nature, 423,635-638.
DOI URL PMID |
[10] | Condit R, Hubbell SP, Foster RB (1995). Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65,419-439. |
[11] | Durrett R, Levin SA (1996). Spatial models for species area curves. Journal of Theoretical Biology, 179,119-127. |
[12] | Etienne RS (2005). A new sampling formula for neutral biodiversity. Ecology Letters, 8,253-260. |
[13] |
Etienne RS, Alonso D (2005). A dispersal-limited sampling theory for species and alleles. Ecology Letters, 8,1147-1156.
DOI URL PMID |
[14] | Etienne RS, Olff H (2004a). How dispersal limitation shapes species-body size distributions in local communities. American Naturalist, 163,69-83. |
[15] | Etienne RS, Olff H (2004b). A novel genealogical approach to neutral biodiversity theory. Ecology Letters, 7,170-175. |
[16] | Fisher RA, Corbet AS, Williams CB (1943). The relation between the number of species and the number of individuals in a random sample from an animal population. Journal of Animal Ecology, 12,42-58. |
[17] |
Hubbell SP (1979). Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203,1299-1309.
URL PMID |
[18] | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[19] | Hubbell SP (2003). Modes of speciation and the lifespans of species under neutrality: a response to the comment of Robert E. Ricklefs. Oikos, 100,193-199. |
[20] |
Hubbell SP (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87,1387-1398.
DOI URL PMID |
[21] | Hubbell SP (2005a). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19,166-172. |
[22] | Hubbell SP (2005b). The neutral theory of biodiversity and biogeography and Stephen Jay Gould. Paleobiology, 31,122-132. |
[23] | Hubbell SP, Foster RB (1983). Diversity of canopy trees in a neotropical forest and implications for conservation. In: Sutton SL, Whitmore TC, Chadwick AC eds. Tropical Rain Forest: Ecology and Management. Blackwell Scientific Publications, Oxford, 25-41. |
[24] | Hubbell SP, Foster RB (1986). Biology, chance and history and the structure of tropical rain forest tree communities. In: Diamond JM, Case TJ eds. Community Ecology. Harper and Row, New York,314-329. |
[25] | Karlin S, McGregor J (1967). The number of mutants maintained in a population. Proceedings of 5th Berkely Symposium on Mathematical Statistics and Probability, IV,415-438. |
[26] | Levin SA, Nathan R, Muller-Landau HC, Chave J (2003). The ecology and evolution of dispersal: a theoretical perspective. Annual Review of Ecology Evolution and Systematics, 34,575-604. |
[27] | MacArthur RH, Wilson EO (1963). An equilibrium theory of insular zoogeography. Evolution, 17,373-387. |
[28] | MacArthur RH, Wilson EO (1967). The Theory of Island Biogeo-graphy. Princeton University Press, Princeton. |
[29] |
Magurran AE, Henderson PA (2003). Explaining the excess of rare species in natural species abundance distributions. Nature, 422,714-716.
DOI URL PMID |
[30] |
McGill BJ (2003). A test of the unified neutral theory of biodiversity. Nature, 422,881-885.
DOI URL PMID |
[31] | Morse PM, Feshbach H (1953). Methods of Theoretical Physics. McGraw-Hill, New York. |
[32] | Mouquet N, Loreau M (2003). Coexistence in metacommunities: the regional similarity hypothesis. American Naturalist, 162,544-557. |
[33] |
Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002). Low host specificity of herbivorous insects in a tropical forest. Nature, 416,841-844.
DOI URL PMID |
[34] | Pandolfi JM (1996). Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea:constancy during global change. Paleobiology, 22,152-176. |
[35] | Pandolfi JM (2002). Coral community dynamics at multiple scales. Coral Reefs, 21,13-23. |
[36] | Poulin R (2004). Parasites and the neutral theory of biodiversity. Ecography, 27,119-123. |
[37] | Preston FW (1948). The commonness and rarity of species. Ecology, 29,254-283. |
[38] | Ricklefs RE (2003). A comment on Hubbell's zero-sum ecological drift model. Oikos, 100,185-192. |
[39] | Sheil D, Jennings S, Savill P (2000). Long-term permanent plot observations of vegetation dynamics in Budongo, a Ugandan rain forest. Journal of Tropical Ecology, 16,765-800. |
[40] | Sugihara G, Bersier L, Southwood TRE, Pimm SL, May RM (2003). Predicted correspondence between species abundance and dendrograms of niche similarity. Proceedings of the National Academy of Sciences of the United States of America, 100,5246-5251. |
[41] |
Tilman D (2004). Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America, 101,10854-10861.
DOI URL PMID |
[42] | Tilman D, Pacala S (1993). The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D eds. Species Diversity in Ecological Communities. Chicago University Press, Chicago,13-25. |
[43] | Tokeshi M (1990). Niche apportionment or random assortment: species abundance patterns revisited. Journal of Animal Ecology, 59,1129-1146. |
[44] |
Volkov I, Banavar JR, Hubbell SP, Maritan A (2003). Neutral theory and relative species abundance in ecology. Nature, 424,1035-1037.
DOI URL PMID |
[45] | Yu DW, Terborgh JW, Potts MD (1998). Can high tree species richness be explained by Hubbell's null model? Ecology Letters, 1,193-199. |
[46] | Zhang DY, Lin K (1997). The effects of competitive asymmetry on the rate of competitive displacement: how robust is Hubbell's community drift model? Journal of Theoretical Biology, 188,361-367. |
[47] | Zhang DY(张大勇) (2000). Researches on Theoretical Ecology (理论生态学研究). Higher Education Press, Beijing. (in Chinese) |
[48] | Zhou SR, Zhang DY (2006). Allee effects and the neutral theory of biodiversity. Functional Ecology, 20,509-513. |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[4] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[5] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[6] | 薛志方, 刘彤, 王立生, 宋继虎, 陈宏阳, 徐玲, 袁也. 额尔齐斯河流域主要支流平原河谷林群落结构及特征[J]. 植物生态学报, 2024, 48(3): 390-402. |
[7] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[8] | 肖兰, 董标, 张琳婷, 邓传远, 李霞, 姜德刚, 林勇明. 渤海无居民海岛主要植被类型群落特征[J]. 植物生态学报, 2024, 48(1): 127-134. |
[9] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[10] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[11] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[12] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[13] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[14] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[15] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19