植物生态学报 ›› 2006, Vol. 30 ›› Issue (6): 901-910.DOI: 10.17521/cjpe.2006.0114
收稿日期:
2004-05-08
接受日期:
2006-05-13
出版日期:
2006-05-08
发布日期:
2006-11-30
作者简介:
E-mail: mojm@scib.ac.cn
基金资助:
MO Jiang-Ming1(), FANG Yun-Ting1, LIN Er-Da2, LI Yu-E2
Received:
2004-05-08
Accepted:
2006-05-13
Online:
2006-05-08
Published:
2006-11-30
摘要:
研究了鼎湖山生物圈保护区马尾松(Pinus massoniana)林、混交林和季风常绿阔叶林(季风林)土壤N2O排放特征及其对氮沉降增加的响应。在1999~2002年期间,3种森林土壤N2O排放速率均表现明显的季节性变化特点,但这种季节性变化因年份和森林类型不同而异,总的来说,3种森林土壤N2O排放速率呈现夏秋季较高而冬春季较低的变化。土壤N2O排放速率在3年观测期间的平均值分别为(g·hm-2·d-1):14.2±3.1(季风林),5.8±0.9(混交林)和5.1±0.9(马尾松林)。土壤N2O排放速率与土壤温度之间在季风林呈现显著的指数正相关关系,但在混交林和马尾松林中它们之间的关系则均不明显。经3个月的模拟氮沉降试验后,氮沉降增加对季风林和马尾松林土壤N2O的排放均具有明显的促进作用,且这种促进作用随氮沉降水平的升高而增强,但对混交林土壤N2O排放的影响则不明显。
莫江明, 方运霆, 林而达, 李玉娥. 鼎湖山主要森林土壤N2O排放及其对模拟N沉降的响应. 植物生态学报, 2006, 30(6): 901-910. DOI: 10.17521/cjpe.2006.0114
MO Jiang-Ming, FANG Yun-Ting, LIN Er-Da, LI Yu-E. SOIL N2O EMISSION AND ITS RESPONSE TO SIMULATED N DEPOSITION IN THE MAIN FORESTS OF DINGHUSHAN IN SUBTROPICAL CHINA. Chinese Journal of Plant Ecology, 2006, 30(6): 901-910. DOI: 10.17521/cjpe.2006.0114
森林类型 Forest type | 土层深 Soil depth (cm) | 有机质 Organic matter (%) | 全氮 Total N (%) | 碳氮比 C/N | pH | 容重 Bulk density (g·cm-3) | 含水量 Moisture content (%) |
---|---|---|---|---|---|---|---|
马尾松林 PF | 0~20 | 2.73 (0.17) | 0.09 (0.01) | 16.79 (0.94) | 4.03 (0.02) | 1.41 (0.04) | 24.90 (1.10) |
混交林 MF | 0~20 | 3.45 (0.35) | 0.10 (0.01) | 18.90 (0.97) | 3.86 (0.02) | 1.30 (0.04) | 25.97 (0.91) |
季风林 MEBF | 0~20 | 5.35 (0.58) | 0.19 (0.01) | 15.91 (0.86) | 3.79 (0.06) | 1.21 (0.03) | 38.57 (1.19) |
表1 鼎湖山马尾松林、混交林和季风常绿阔叶林土壤理化性质(平均值,标准误)*
Table 1 Soil properties in pine, mixed and monsoon evergreen broadleaf forests of Dinghushan in subtropical China (mean, SE in parenthesis)*
森林类型 Forest type | 土层深 Soil depth (cm) | 有机质 Organic matter (%) | 全氮 Total N (%) | 碳氮比 C/N | pH | 容重 Bulk density (g·cm-3) | 含水量 Moisture content (%) |
---|---|---|---|---|---|---|---|
马尾松林 PF | 0~20 | 2.73 (0.17) | 0.09 (0.01) | 16.79 (0.94) | 4.03 (0.02) | 1.41 (0.04) | 24.90 (1.10) |
混交林 MF | 0~20 | 3.45 (0.35) | 0.10 (0.01) | 18.90 (0.97) | 3.86 (0.02) | 1.30 (0.04) | 25.97 (0.91) |
季风林 MEBF | 0~20 | 5.35 (0.58) | 0.19 (0.01) | 15.91 (0.86) | 3.79 (0.06) | 1.21 (0.03) | 38.57 (1.19) |
图1 鼎湖山马尾松林(PF)、马尾松针阔叶混交林(MF)和季风常绿阔叶林(MEBF)土壤不同处理样地pH值、铵态氮和硝态氮浓度的比较(n=12) 不同字母表示同一森林不同处理间和同一处理不同森林间在p=0.05水平差异显著
Fig.1 Comparisons of soil pH values, ammonium and nitrate conce-ntrations in different nitrogen treatments of pine (PF), pine-broadleaf mixed (MF) and monsoon evergreen broadleaf (MEBF) forests in subtropical China (n=12) Different letter means significantly different among treatments with the same forest and among forests within the same treatment at p=0.05 level
图2 2003年10月鼎湖山马尾松林(PF)、马尾松针阔叶混交林(MF)和季风常绿阔叶林(MEBF)对照样地土壤N2O排放动态
Fig.2 Changes of soil N2O emission of control plots with time in pine (PF), pine-broadleaf mixed (MF) and monsoon evergreen broadleaf (MEBF) forests in Dinghushan of subtropical China measured in October 2003
图3 1999~2002年鼎湖山马尾松林(PF)、马尾松针阔叶混交林(MF)和季风常绿阔叶林(MEBF)土壤N2O排放动态
Fig.3 Dynamic of soil N2O emission of pine (PF), pine-broadleaf mixed (MF) and monsoon evergreen broadleaf (MEBF) forests in Dinghushan of subtropical China during the period of 1999 to 2002
图4 2000~2001年期间鼎湖山马尾松林(PF)、马尾松针阔叶混交林(MF)和季风常绿阔叶林(MEBF)土壤N2O排放与土壤温度的关系
Fig.4 Relationship of soil N2O emssion and soil temperature in pine (PF), pine-broadleaf mixed (MF) and monsoon evergreen broadleaf (MEBF) forests of subtropical China during the period of 2000 to 2001
图5 鼎湖山马尾松林(PF)、马尾松针阔叶混交林(MF)和季风常绿阔叶林(MEBF)土壤不同处理样地N2O排放比较(n=18) 不同字母表示同一森林不同处理间在p=0.05水平差异显著
Fig.5 Comparison of soil N2O emission in different nitrogen treatments of pine (PF), pine-broadleaf mixed (MF) and monsoon evergreen broadleaf (MEBF) forests in subtropical China (n=18) Different letter means significantly different among treatments with the same forest at p=0.05 level
[1] | Butterbach-Bahl K, Breuer L, Gasche R, Willibald G, Papen H (2002). Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the Northeastern German lowlands. 1. Fluxes of N2O, NO/NO2 and CH4 at forest sites with different N-deposition. Forest Ecology and Management, 167,123-134. |
[2] | Butterbach-Bahl K, Gasche R, Breuer L, Papen H (1977). Fluxes of NO and N2O from temperate forest soils: impact of forest type, N-deposition and of liming on the NO and N2O emissions. Nutrient Cycling in Agroecosystems, 48,79-90. |
[3] | Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196,43-56. |
[4] |
David M (1998). Holding a nitrogen grudge. Science, 279,1308.
URL PMID |
[5] | Davidson EA, Ishida FY, Nepstad DC (2004). Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 10,718-730. |
[6] | Dong YS(董云社), Peng GB(彭公炳), Li J(李俊) (1996). Seasonal variations of CO2, CH4 and N2O fluxes from temperate forest soil. Acta Geographica Sinica(地理学报), 51(Suppl.),120-128. (in Chinese with English abstract) |
[7] | Emmett BA, Boxman AW, Bredemeier M, Gundersen P, KjØnaas OJ, Moldan F, Schleppi P, Tietema A, Wright RF (1998). Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems, 1,352-360. |
[8] | Fenn ME, Poth MA, Aber JD, Baron J, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998). Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8,706-733. |
[9] | Galloway JN, Cowling EB (2002). Reactive nitrogen and the world: 200 years of change. Ambio, 31,64-71. |
[10] | Gasche R, Papen H (1999). A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. 2. NO and NO2 fluxes. Journal of Geophysical Research, 104,18505-18518. |
[11] | Goodroad LL, Keeny DR (1984). Nitrous oxide emission from forest, marsh, and prairie ecosystems. Journal of Environmental Quality, 13,448-452. |
[12] | Hall SJ, Matson PA (1999). Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature, 400,152-155. |
[13] | Hall SJ, Matson PA (2003). Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecological Monographs, 73,107-129. |
[14] | Huang ZF(黄展帆), Fan ZG(范征广) (1982). The climate of Dinghushan. Tropical and Subtropical Forest Ecosystem(热带亚热带森林生态系统研究), 1,11-13. (in Chinese with English abstract) |
[15] | Huang ZL(黄忠良), Ding MM(丁明懋), Zhang ZP(张祝平), Yi WM(蚁伟民) (1994). The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan. Acta Phytoecologica Sinica(植物生态学报), 18,194-199. (in Chinese with English abstract) |
[16] | Khalil MAK, Rasmussen RA (1993). Decreasing trend of methane: unpredictability of future concentrations. Chemosphere, 26,803-814. |
[17] | Li DJ(李德军), Mo JM(莫江明), Fang YT(方运霆), Peng SL(彭少麟), Gundersen P (2003). Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica(生态学报), 23,1891-1900. (in Chinese with English abstract) |
[18] | Liu GS(刘光崧), Jiang NH(蒋能惠), Zhang LD(张连第), Liu ZL(刘兆礼) (1996). Soil Physical and Chemical Analysis and Description of Soil Profiles (土壤理化分析与剖面描述). Standards Press of China, Beijing, 121-265. (in Chinese) |
[19] | Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997). Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecological Applications, 7,402-415. |
[20] | Matson PA, Lohse KA, Hall SJ (2002). The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio, 31,113-119. |
[21] | Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999). The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry, 46,67-83. |
[22] | Mo JM, Brown S, Peng SL, Kong GH (2003). Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. Forest Ecology and Management, 175,573-583. |
[23] | Mo JM(莫江明), Xue JH(薛王景花), Fang YT(方运霆) (2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Eclogica Sinica (生态学报), 24,1413-1420. (in Chinese with English abstract) |
[24] | Li DJ(李德军), Mo JM(莫江明), Fang YT(方运霆), Li ZA(李志安) (2005). Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Phytoecologica Sinica (植物生态学报), 29,543-549. (in Chinese with English abstract) |
[25] | Oura N, Shindo J, Fumoto T, Toda H, Kawashima H (2001). Effects of nitrogen deposition on nitrous oxide emissions from the forest floor. Water, Air, and Soil Pollution, 130,673-678. |
[26] | Ren R(任仁), Mi FJ(米丰杰), Bai NB(白乃彬) (2002). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University(北京工业大学学报), 26,90-95. (in Chinese with English abstract) |
[27] | Sun XY(孙向阳) (2000). CH4 emission flux of forest soils in lower mountain area, Beijing. Soil and Environmental Sciences(土壤与环境), 9,173-176. (in Chinese with English abstract) |
[28] | Townsend AR, Braswell BH, Holland EA, Penner JE (1996). Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications, 6,804-814. |
[29] | Vitousek PM (1994). Beyond global warming: ecology and global change. Ecology, 175,1861-1876. |
[30] | Vitousek PM, Aber JD, Howarth RW, Liken GE, Matson PA, Schindler DW, Schlesinger DH, Tilman D (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7,737-750. |
[31] | Wang ZH(王铸豪), He SY(何少颐), Song SD(宋绍墩), Chen SP(陈树培), Chen DR(陈定如), Tu MZ(屠梦照) (1982). The vegetation of Dinghushan biosphere reserve. Tropical and Subtropical Forest Ecosystem(热带亚热带森林生态系统研究), 1,77-141. (in Chinese with English abstract) |
[32] | Wright RF, Roelofs JGM, Bredemeier M, Blanck K, Boxman AW, Emmett BA, Gundersen P, Hultberg H, KjØnaas OJ, Moldan F, Tietema A, van Breemen N, van Dijk HFG. (1995). NITREX: responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen. Forest Ecology and Management, 71,163-169. |
[33] | Xu GL(徐国良), Mo JM(莫江明), Zhou GY(周国逸), Peng SL(彭少麟) (2003). Relationship of soil fauna and N cycling and its response to N deposition. Acta Ecologica Sinica(生态学报), 23,2453-2463. (in Chinese with English abstract) |
[34] | Xu H(徐慧), Chen GX(陈冠雄), Ma CX(马成新) (1995). A preliminary study on N2O and CH4 emissions from different soils on northern slope of Changbai Mountain. Chinese Journal of Applied Ecology(应用生态学报), 6,373-377. (in Chinese with English abstract) |
[35] | Zhang XJ(张秀君), Xu H(徐慧), Chen GX(陈冠雄) (2002). Important factors controlling rates of N2O emission and CH4 oxidation from forest soil. Environmental Science(环境科学), 23(5),8-12. (in Chinese with English abstract) |
[36] |
Zheng X, Fu C, Xu X, Yan X, Huang Y, Han S, Hu F, Chen G (2002). The Asian nitrogen cycle case study. Ambio, 31,79-87.
URL PMID |
[37] | Zhou GY(周国逸), Yan JH(闫俊华) (2001). The influence of region atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems. Acta Ecologica Sinica(生态学报), 21,2002-2012. (in Chinese with English abstract) |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[3] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[4] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[5] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[6] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[7] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[8] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[9] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[10] | 宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文. 极端干旱对草甸草原优势植物非结构性碳水化合物的影响[J]. 植物生态学报, 2020, 44(6): 669-676. |
[11] | 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 526-542. |
[12] | 史娜娜, 肖能文, 王琦, 韩煜, 高晓奇, 冯瑾, 全占军. 锡林郭勒植被NDVI时空变化及其驱动力定量分析[J]. 植物生态学报, 2019, 43(4): 331-341. |
[13] | 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019, 43(4): 320-330. |
[14] | 苑丹阳, 朱良军, 张远东, 李宗善, 赵慧颖, 王晓春. 吉林老白山鱼鳞云杉树轮蓝光强度和轮宽指数与气候响应关系随海拔变化的对比[J]. 植物生态学报, 2019, 43(12): 1061-1078. |
[15] | 申佳艳, 李帅锋, 黄小波, 雷志全, 施兴全, 苏建荣. 南盘江流域云南松径向生长对气候暖干化的响应[J]. 植物生态学报, 2019, 43(11): 946-958. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19