植物生态学报 ›› 2007, Vol. 31 ›› Issue (3): 363-371.DOI: 10.17521/cjpe.2007.0044
韩广轩1,2(), 周广胜1,*(
), 许振柱1, 杨扬3, 刘景利3, 史奎桥3
收稿日期:
2006-06-05
接受日期:
2006-11-14
出版日期:
2007-06-05
发布日期:
2007-05-30
通讯作者:
周广胜
作者简介:
* E-mail: gszhou@ibcas.ac.cn基金资助:
HAN Guang-Xuan1,2(), ZHOU Guang-Sheng1,*(
), XU Zhen-Zhu1, YANG Yang3, LIU Jing-Li3, SHI Kui-Qiao3
Received:
2006-06-05
Accepted:
2006-11-14
Online:
2007-06-05
Published:
2007-05-30
Contact:
ZHOU Guang-Sheng
摘要:
基于2005年玉米(Zea mays)生长季土壤呼吸作用及其影响因子的动态观测资料,分析了玉米地土壤呼吸作用的日和季动态及其对土壤温度和生物因子协同作用的响应。结果表明,玉米地土壤呼吸作用的日变化为不对称的单峰型,其最小值和最大值分别出现在6∶00~7∶00和13∶00左右;玉米生长季中,土壤呼吸速率波动较大,其均值为3.16 μmol CO2·m-2·s-1,最大值为4.87 μmol CO2·m-2·s-1,出现在7月28日,最小值为1.32 μmol CO2·m-2·s-1,出现在5月4日。在土壤呼吸作用日变化中,土壤呼吸速率(SR)与10 cm深度土壤温度(T)呈显著的线性关系:SR=αT+β。在整个生长季节,玉米净初级生产力(NPP)与直线斜率(α)呈显著正相关,生物量(B)也明显影响直线的截距(β)。基于此,建立了玉米地土壤呼吸作用动态模型SR=(aNPP+b)T+cB2+dB+e。土壤呼吸作用季节变化的大部分(97%)可以由土壤温度、NPP和生物量的季节变化来解释。当仅考虑土壤温度对土壤呼吸作用的影响时,指数方程会过大或过小地估计了土壤呼吸强度。该文的结果强调了生物因子在土壤呼吸作用季节变化中的重要作用,同时指出土壤呼吸作用模型不仅要考虑土壤温度的影响,在生物因子影响土壤呼吸作用的温度敏感性时,还应该把生物因子纳入模型。
韩广轩, 周广胜, 许振柱, 杨扬, 刘景利, 史奎桥. 玉米地土壤呼吸作用对土壤温度和生物因子协同作用的响应. 植物生态学报, 2007, 31(3): 363-371. DOI: 10.17521/cjpe.2007.0044
HAN Guang-Xuan, ZHOU Guang-Sheng, XU Zhen-Zhu, YANG Yang, LIU Jing-Li, SHI Kui-Qiao. RESPONSES OF SOIL RESPIRATION TO THE COORDINATED EFFECTS OF SOIL TEMPERATURE AND BIOTIC FACTORS IN A MAIZE FIELD. Chinese Journal of Plant Ecology, 2007, 31(3): 363-371. DOI: 10.17521/cjpe.2007.0044
图1 2005年玉米生长季中10 cm和20 cm土壤温度(A)、降雨量、10 cm和20 cm土壤湿度(B)以及地上部分生物量、地下部分生物量和总生物量和净初级生产力(NPP)(C)的季节变化
Fig.1 Seasonal patterns of (A) soil temperature at 10 cm and 20 cm depth, (B) precipitation and soil water content at 10 cm and 20 cm and (C) seasonal variations of averaged shoot biomass, root biomass, total biomass and net primary productivity (NPP) of maize during the growth season in 2005
图2 2005年5月4日、6月5日、6月28日、7月28日、8月28日和9月22日玉米地土壤呼吸速率的日动态 土壤呼吸速率的数据为平均值及标准误差
Fig.2 Diurnal variations of soil respiration on May 4, June 5, June 28, July 28, August 28 and September 22 during the growing season of maize in 2005 Data of soil respiration rate represent means±SE (n=15)
日期 Date | 10 cm深度土壤温度 T at 10 cm depth (℃) | 20 cm深度土壤温度 T at 20 cm depth (℃) | 30 cm深度土壤温度 T at 30 cm depth (℃) |
---|---|---|---|
5月4日 May 4 | 0.976** | 0.475 | 0.145 |
6月5日 June 5 | 0.955** | 0.682* | 0.483 |
6月28日 June 28 | 0.980** | 0.976** | 0.826** |
7月28日 July 28 | 0.979** | 0.923** | 0.693** |
8月28日 August 28 | 0.986** | 0.842** | 0.695** |
9月22日 September 22 | 0.929** | 0.877** | 0.427 |
表1 白天土壤呼吸速率与土壤温度(T)的相关关系
Table 1 Correlation coefficients of soil respiration rate during daytime with soil temperatures (T)
日期 Date | 10 cm深度土壤温度 T at 10 cm depth (℃) | 20 cm深度土壤温度 T at 20 cm depth (℃) | 30 cm深度土壤温度 T at 30 cm depth (℃) |
---|---|---|---|
5月4日 May 4 | 0.976** | 0.475 | 0.145 |
6月5日 June 5 | 0.955** | 0.682* | 0.483 |
6月28日 June 28 | 0.980** | 0.976** | 0.826** |
7月28日 July 28 | 0.979** | 0.923** | 0.693** |
8月28日 August 28 | 0.986** | 0.842** | 0.695** |
9月22日 September 22 | 0.929** | 0.877** | 0.427 |
图3 玉米地土壤呼吸作用方程(5)(A)和(6)(B)验证,虚线为回归线,实线分别为95%可信区间和预测水平
Fig.3 Relationships between measured soil respiration and the modeled soil respiration (A, B) for all data combined during the growing season in the maize ecosystem, using Equation (5) (A) and Equation (6) (B), respectively. The dotted lines are regression lines, and the other solid lines represent the 95% confidence and prediction levels, respectively
日期 Date | SR=αT+β | 10 cm深度土壤 温度T at 10 cm depth (℃) | 10 cm深度土壤 湿度W at 10 cm depth (%) | 生物量B (g·m-2) | NPP (g·m-2·d-1) | 土壤全碳 C (%) | 土壤全氮 N (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
α | β | R2 | p | |||||||
5月4日 May 4 | 0.075 7 | -0.061 7 | 0.95 | <0.000 1 | 18.2 | 23.6 | 0.0 | 0.0 | 7.84 (0.32) | 0.86 (0.05) |
6月5日 June 5 | 0.118 8 | -0.642 9 | 0.91 | <0.000 1 | 23.3 | 33.1 | 17.4 (1.5) | 0.7 (0.2) | 8.61 (0.33) | 0.91 (0.05) |
6月28日 June 28 | 0.345 6 | -4.776 8 | 0.96 | <0.000 1 | 25.1 | 34.8 | 174.3 (15.8) | 21.3 (1.5) | 8.44 (0.31) | 0.93 (0.02) |
7月28日 July 28 | 0.431 4 | -5.740 2 | 0.96 | <0.000 1 | 24.4 | 34.7 | 1034.5 (35.1) | 40.6 (3.2) | 9.10 (0.12) | 1.01 (0.02) |
8月28日 August 28 | 0.194 6 | -0.095 7 | 0.97 | <0.000 1 | 24.1 | 36.9 | 2110.1 (51.7) | 23.1 (2.2) | 7.98 (0.11) | 0.70 (0.02) |
9月22日 September 22 | 0.103 6 | 0.722 1 | 0.86 | <0.000 1 | 14.8 | 33.8 | 2477.2 (53.8) | 12.2 (1.4) | 8.46 (0.24) | 0.70 (0.03) |
表2 玉米生长季中6次测定日期中,方程SR=αT+β中α值和β值及其相应10 cm深度土壤温度(T)、10 cm深度土壤湿度(W)、生物量(B)、净初级生产力(NPP)、土壤全碳(C)和全氮(N)等环境因子
Table 2 Values of coefficients α and β of the equation (SR=αT+β) and corresponding environmental factors including soil temperature (T) at 10 cm depth, soil moisture (W) at 10 cm depth, biomass (B), net primary productivity (NPP) of maize, total carbon (C) and soil nitrogen (N) for each of the six measurement dates during a maize growth season in 2005
日期 Date | SR=αT+β | 10 cm深度土壤 温度T at 10 cm depth (℃) | 10 cm深度土壤 湿度W at 10 cm depth (%) | 生物量B (g·m-2) | NPP (g·m-2·d-1) | 土壤全碳 C (%) | 土壤全氮 N (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
α | β | R2 | p | |||||||
5月4日 May 4 | 0.075 7 | -0.061 7 | 0.95 | <0.000 1 | 18.2 | 23.6 | 0.0 | 0.0 | 7.84 (0.32) | 0.86 (0.05) |
6月5日 June 5 | 0.118 8 | -0.642 9 | 0.91 | <0.000 1 | 23.3 | 33.1 | 17.4 (1.5) | 0.7 (0.2) | 8.61 (0.33) | 0.91 (0.05) |
6月28日 June 28 | 0.345 6 | -4.776 8 | 0.96 | <0.000 1 | 25.1 | 34.8 | 174.3 (15.8) | 21.3 (1.5) | 8.44 (0.31) | 0.93 (0.02) |
7月28日 July 28 | 0.431 4 | -5.740 2 | 0.96 | <0.000 1 | 24.4 | 34.7 | 1034.5 (35.1) | 40.6 (3.2) | 9.10 (0.12) | 1.01 (0.02) |
8月28日 August 28 | 0.194 6 | -0.095 7 | 0.97 | <0.000 1 | 24.1 | 36.9 | 2110.1 (51.7) | 23.1 (2.2) | 7.98 (0.11) | 0.70 (0.02) |
9月22日 September 22 | 0.103 6 | 0.722 1 | 0.86 | <0.000 1 | 14.8 | 33.8 | 2477.2 (53.8) | 12.2 (1.4) | 8.46 (0.24) | 0.70 (0.03) |
图4 土壤呼吸作用的季节变化及其方程(5)和(6)对土壤呼吸作用季节动态的模拟 垂直棒代表每天土壤呼吸的平均值及其标准误差。实线代表方程(5)的拟合,而点线代表方程(6)的拟合
Fig.4 Seasonal variations of measured and modeled soil respiration during the growth season of maize Symbols represent mean and standard error of soil respiration on every sampling day. The solid line represents Equation (5), and the dotted line is Equation (6)
[1] | Boone RD, Nadelhoer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572. |
[2] | Buchmann N (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry, 32, 1625-1635. |
[3] | Buyanovsky GA, Wagner GH 1995. Soil respiration and carbon dynamics in parallel native and cultivated ecosystems. In: Lal R, Kimble J, Levine E, Stewart BA eds. Soils and Global Change. CRC Pres, Boca Raton, FL, USA, 209-217. |
[4] | Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ (2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biology and Biochemistry, 36, 237-243. |
[5] | Chimner RA (2004). Soil respiration rates of tropical peat lands in Micronesia and Hawaii. Wetlands, 24, 51-56. |
[6] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[7] |
Davidson EA, Trumbore SE, Amundson R (2000). Soil warming and carbon content. Nature, 408, 789-790.
DOI URL PMID |
[8] | Dilustro JJ, Collins B, Duncan L, Crawford C (2005). Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, 204, 85-95. |
[9] | Dong M(董鸣) (1996). Survey, Observation and Analysis of Terrestrial Biocommunities (陆地生物群落调查观测与分析). China Standards Press, Beijing, 66. (in Chinese) |
[10] | Epron D, Nouvellon Y, Roupsard O, Mouvondy W, Mabialab A, Laurent SA, Joffre R, Jourdan C, Bonnefond JM, Berbigier P, Hamel O (2004). Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. Forest Ecology and Management, 202, 149-160. |
[11] |
Fan SM, Goulden ML, Munger JW, Daube BC, Bakwin PS, Wofsy SC, Amthor JS, Fitzjarrald D, Moore KE, Moore TR (1995). Environmental controls on the photosynthesis and respiration of a boreal lichen woodland: a growing season of whole ecosystem exchange measurements by eddy-correlation. Oecologia, 102, 443-452.
DOI URL PMID |
[12] | Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry, 33, 155-165. |
[13] | Fang C, Moncrieff JB, Gholz HL, Clark KL (1998). Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil, 205, 135-146. |
[14] | Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology and Biochemistry, 39, 418-425. |
[15] | Han GX(韩广轩), Zhu B(朱波), Jiang CS(江长胜) (2006). Soil respiration and its controlling factors in rice fields in the hill region of the central Sichuan Basin. Journal of Plant Ecology (formerly Acta Phytoecologica Sinica ) (植物生态学报), 30, 450-456. (in Chinese with English abstract) |
[16] | Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146. |
[17] |
Høgberg P, Nordgren A, ?gren GI (2002). Carbon allocation between tree root growth and root respiration in boreal pine forest. Oecologia, 132, 579-581.
DOI URL PMID |
[18] |
Høgberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792.
DOI URL PMID |
[19] | Janssens IA, Pilegaard K (2003). Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9, 911-918. |
[20] | Jenkinson DS (1990). The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London Series B, 329, 361-368. |
[21] | Jia BR(贾丙瑞), Zhou GS(周广胜), Wang FY(王风玉), Wang YH(王玉辉) (2005). Soil respiration and its influencing factors at grazing and fenced typical Leymus chinensis steppe, Nei Monggol. Environmental Science (环境科学), 26, 1-7. (in Chinese with English abstract) |
[22] |
Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003). Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil, 255, 311-318.
DOI URL |
[23] |
Lee MS, Nakane K, Nakatsubo T, Mo WH, Koizumi H (2002). Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest. Ecological Research, 17, 401-409.
DOI URL |
[24] | Li ZF(李兆富), Lü XG(吕宪国), Yang Q(杨青), Gao JQ(高俊琴)(2003). Soil surface CO2 fluxes of Deyeuxia angustifolia wetland in Sanjiang plain. Journal of Nanjing Forestry University (Natural Sciences Edition) (南京林业大学学报(自然科学版)), 23, 51-54.(in Chinese with English abstract) |
[25] | Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. |
[26] | Lohila A, Aurela M, Regina K, Laurila T (2003). Soil and total ecosystem respiration in agricultural fields: effect of soil and crop type. Plant and Soil, 251, 303-317. |
[27] | Maestre FT, Cortina J (2003). Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology, 23, 199-209. |
[28] | Michelsen A, Andersson M, Jensen M, Kjϕller A, Gashew M (2004). Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems. Soil Biology and Biochemistry, 36, 1707-1717. |
[29] | O'Connell KEB, Gower ST, Norman JM (2003). Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems, 6, 248-260. |
[30] |
Pangle RE, Seiler J (2002). Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation on the Virginia Piedmont. Environmental Pollution, 116, S85-S96.
DOI URL PMID |
[31] | Pumpanen J, Ilvesniemi H, Per⁉m⁉ki M, Hari P (2003). Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest: comparison of two chamber techniques. Global Change Biology, 9, 371-382. |
[32] | Pypker TG, Fredeen AL (2003). Below ground CO2 efflux from cut blocks of varying ages in sub-boreal British Columbia. Forest Ecology Management, 172, 249-259. |
[33] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. |
[34] | Raich JW, Potter CS (1995). Global patterns of carbon-dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36. |
[35] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90. |
[36] | Reth S, Gøckede M, Falge E (2004). CO2 efflux from agricultural soils in Eastern Germany—comparison of a closed chamber system with eddy covariance measurements. Theoretical and Applied Climatology, 85, 175-186. |
[37] | Rey A, Pegoraro E, Tedeschi V, Parri ID, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Global Change Biology, 8, 851-866. |
[38] | Rodeghiero M, Cescatti A (2005). Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology, 11, 1024-1041. |
[39] | Samuelson LJ, Johnsen K, Stokes T, Lu W (2004). Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands. Forest Ecology and Management, 200, 335-345. |
[40] | Sánchez ML, Ozores MI, López MJ, Colle R, De Torre B, García MA, Pérez I (2003). Soil CO2 fluxes beneath barley on the central Spanish plateau. Agricultural and Forest Meteorology, 118, 85-95. |
[41] | Sotta ED, Meir P, Malhi Y, Donatonobre A, Hodnett M, Grace J (2004). Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology, 10, 601-617. |
[42] | Tang JW, Baldocchi DD (2005). Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 73, 183-207. |
[43] | Tang JW, Dennis DB, Qi Y, Xu LK (2003). Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agricultural and Forest Meteorology, 118, 207-220. |
[44] | Thierron V, Laudelout H (1996). Contribution of root respiration to total CO2 efflux from the soil of a deciduous forest. Canadian Journal of Forest Research, 26, 1142-1148. |
[45] | Tufekcioglu A, Raich JW, Isenhart TM, Schultz RC (2001). Soil respiration within riparian buffers and adjacent crop fields. Plant and Soil, 229, 117-124. |
[46] | Yang J(杨晶), Huang JH(黄建辉), Zhan XM(詹学明), Li X(李鑫), Du LH(杜丽华), Li LH(李凌浩) (2004). The diurnal dynamic patterns of soil respiration for different plant communities in the agro-pastoral ecotone with reference to different measuring methods. Acta Phytoecologica Sinica (植物生态学报), 28, 318-325. (in Chinese with English abstract) |
[47] | Yuste JC, Janssens, Carrara A, Ceulemans R (2004). Annual Q10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Global Change Biology, 10, 161-169. |
[48] | Xu M, Qi Y (2001). Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677. |
[49] | Wardle DA (2002). Communities and Ecosystems, Linking the Above-Ground and Belowground Components. Princeton University Press, Princeton, 392. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[9] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[10] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[11] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[12] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[13] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[14] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[15] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19