植物生态学报 ›› 2007, Vol. 31 ›› Issue (3): 372-379.DOI: 10.17521/cjpe.2007.0045
贾淑霞, 王政权*(), 梅莉, 孙王月, 全先奎, 史建伟, 于水强, 孙海龙, 谷加存
收稿日期:
2005-12-14
接受日期:
2006-06-19
出版日期:
2007-12-14
发布日期:
2007-05-30
通讯作者:
王政权
作者简介:
* E-mail:wzqsilv@126.com基金资助:
JIA Shu-Xia, WANG Zheng-Quan*(), MEI Li, SUN Yue, QUAN Xian-Kui, SHI Jian-Wei, YU Shui-Qiang, SUN Hai-Long, GU Jia-Cun
Received:
2005-12-14
Accepted:
2006-06-19
Online:
2007-12-14
Published:
2007-05-30
Contact:
WANG Zheng-Quan
摘要:
以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)人工林为研究对象,采用动态气室法(LI-6400-09叶室连接到LI-6400便携式CO2/H2O分析系统)对两种林分的土壤呼吸速率进行了观测,探讨了细根生物量、根中氮含量与土壤呼吸速率的关系,以及施肥对细根生物量、根中氮含量和土壤呼吸速率的影响。结果表明:1)施肥导致落叶松和水曲柳林分的活细根生物量降低18.4%和27.4%, 死细根生物量分别降低了34.8%和127.4%;2)施肥使落叶松和水曲柳林地土壤呼吸速率与对照相比分别减少了34.9%和25.8%;3)施肥对根中氮含量没有显著影响;4)落叶松和水曲柳林地的土壤呼吸与土壤温度表现出相同的季节变化,两种林分的土壤呼吸速率与地下5和10 cm处的温度表现出明显的指数关系,其相关性R2=0.93~0.98。土壤呼吸温度系数Q10的范围在2.45~3.29。施肥处理对Q10没有产生影响,施肥处理导致细根生物量减少可能是引起林地土壤呼吸速率下降的主要原因。
贾淑霞, 王政权, 梅莉, 孙王月, 全先奎, 史建伟, 于水强, 孙海龙, 谷加存. 施肥对落叶松和水曲柳人工林土壤呼吸的影响. 植物生态学报, 2007, 31(3): 372-379. DOI: 10.17521/cjpe.2007.0045
JIA Shu-Xia, WANG Zheng-Quan, MEI Li, SUN Yue, QUAN Xian-Kui, SHI Jian-Wei, YU Shui-Qiang, SUN Hai-Long, GU Jia-Cun. EFFECT OF NITROGEN FERTILIZATION ON SOIL RESPIRATION IN LARIX GMELINII AND FRAXINUS MANDSHURICA PLANTATIONS IN CHINA. Chinese Journal of Plant Ecology, 2007, 31(3): 372-379. DOI: 10.17521/cjpe.2007.0045
图1 施肥和不施肥处理对水曲柳和落叶松林地土壤平均呼吸速率的影响 图中字母“s”代表差异显著(p<0.05)
Fig.1 The effects of fertilizer on soil respiration rate of Fraxinus mandshurica (FM) and Larix gmelinii (LG) plantation Letter “s” represents significant difference (p<0.05)
图2 施肥和不施肥处理对水曲柳和落叶松根系生物量的影响 图中字母“s”代表差异显著(p<0.05),“ns"代表差异不显著
Fig.2 The effects of fertilizer on fine root biomass of Fraxinus mandshurica and Larix gmelinii plantation Letter “s" represents significant difference (p<0.05), “ns" represents no significant difference
图3 施肥和不施肥处理对水曲柳和落叶松根系(直径<2 mm)死生物量影响 图注见图1
Fig.3 The effects of fertilizer on necromass (diameter<2 mm) of Fraxinus mandshurica (FM) and Larix gmelinii (LG) plantation Notes see Fig. 1
图4 施肥处理对水曲柳和落叶松根系氮含量的影响 图注见图2
Fig.4 The effects of fertilizer on the N content of root of Fraxinus mandshurica and Larix gmelinii plantation Notes see Fig. 2
图5 施肥和不施肥处理对水曲柳和落叶松林地土壤呼吸季节影响
Fig.5 The effects of fertilizer on seasonal dynamics of soil respiration rate of Fraxinus mandshurica and Larix gmelinii plantation
图6 水曲柳和落叶松林地施肥和不施肥处理土壤呼吸速率与土壤5和10 cm温度关系
Fig.6 The relationship of soil respiration rate and soil temperature at 5 and 10 cm in fertilized and unfertilized plot of Fraxinus mandshurica and Larix gmelinii plantation
树种 Species | 处理 Treatment | 土壤深度 Soil depth (cm) | a | b | R2 | p | Q10 |
---|---|---|---|---|---|---|---|
水曲柳 | 对照Unfertlized | 5 | 0.981 1 | 0.089 6 | 0.98 | 0.000 2 | 2.45 |
Fraxinus mandshurica | 10 | 1.037 3 | 0.095 6 | 0.93 | 0.001 8 | 2.60 | |
施肥Fertilized | 5 | 0.697 5 | 0.090 4 | 0.98 | 0.001 8 | 2.47 | |
10 | 0.739 0 | 0.096 4 | 0.93 | 0.001 8 | 2.62 | ||
落叶松 | 对照Unfertlized | 5 | 0.600 7 | 0.111 5 | 0.97 | 0.000 5 | 3.05 |
Larix gmelinii | 10 | 0.653 7 | 0.119 1 | 0.94 | 0.001 3 | 3.29 | |
施肥Fertilized | 5 | 0.453 7 | 0.110 5 | 0.97 | 0.000 4 | 3.02 | |
10 | 0.494 9 | 0.117 9 | 0.95 | 0.001 1 | 3.25 |
表1 水曲柳和落叶松林地土壤呼吸速率指数模型和Q10值
Table 1 Soil respiration rate Arrhenius models and Q10 in Fraxinus mandshurica and Larix gmelinii plantations
树种 Species | 处理 Treatment | 土壤深度 Soil depth (cm) | a | b | R2 | p | Q10 |
---|---|---|---|---|---|---|---|
水曲柳 | 对照Unfertlized | 5 | 0.981 1 | 0.089 6 | 0.98 | 0.000 2 | 2.45 |
Fraxinus mandshurica | 10 | 1.037 3 | 0.095 6 | 0.93 | 0.001 8 | 2.60 | |
施肥Fertilized | 5 | 0.697 5 | 0.090 4 | 0.98 | 0.001 8 | 2.47 | |
10 | 0.739 0 | 0.096 4 | 0.93 | 0.001 8 | 2.62 | ||
落叶松 | 对照Unfertlized | 5 | 0.600 7 | 0.111 5 | 0.97 | 0.000 5 | 3.05 |
Larix gmelinii | 10 | 0.653 7 | 0.119 1 | 0.94 | 0.001 3 | 3.29 | |
施肥Fertilized | 5 | 0.453 7 | 0.110 5 | 0.97 | 0.000 4 | 3.02 | |
10 | 0.494 9 | 0.117 9 | 0.95 | 0.001 1 | 3.25 |
[1] |
Bloom AJ, Sukrapanna SS, Warner RL(1992). Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiology, 99, 1294-1301.
DOI URL PMID |
[2] | Borken W, Xu YJ(2002). Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology, 8, 1205-1216. |
[3] | Bowden RD, Davidson E, Savage K, Arabia C, Steudler P(2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196, 43-56. |
[4] |
Burton AJ, Pregitzer KS, Ruess RW(2002). Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia, 131, 559-568.
DOI URL PMID |
[5] | Chapin FS III, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York, 136-137. |
[6] |
Dixon RK, Brown S, Houghon RA, Solomon AM, Trexler MC, Wisniewski J(1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[7] | Eissenstat DM, Yanai RD(1997). The ecology of root lifespan. Advance in Ecological Research, 27, 1-60. |
[8] | Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL(2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-42. |
[9] | Fox TR (2000). Sustained productivity in intensively managed forest plantation. Forest Ecology and Management, 138, 187-202. |
[10] | Frey SD, Knorr M, Parrent JL, Simpson RT(2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159-171. |
[11] | Gallardo A, Schlesinger WH(1994). Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biology and Biochemistry, 26, 1409-1415. |
[12] | Gower ST, Vogt KA, Grier CC(1992). Carbon dynamics of Rocky Mountain douglas-fir: influence of water and nutrient availability. Ecological Monographs, 62, 43-65. |
[13] |
Haynes BE, Gower ST(1995). Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology, 15, 317-325.
DOI URL PMID |
[14] |
Hendricks JJ, Nadelhoffer KJ, Aber JD(1993). Assessing the role of fine roots in carbon and nutrient cycling. Trends of Ecology and Evolution, 8, 174-178.
DOI URL PMID |
[15] | Kane ES, Pregitzer KS, Burton AJ(2003). Soil respiration along environmental gradients in Olympic National Park. Ecosystems, 6, 326-335. |
[16] | Kang S, Doh S, Lee D (2003). Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9, 1427-1437. |
[17] | Kieth H, Jacobsen KL, Raison RJ(1997). Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant and Soil, 190, 127-141. |
[18] | King JS, Albaugh TJ, Lee AH, Buford M, Strain BR, Dougherty P(2002). Belowground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154, 389-398. |
[19] |
King JS, Pregitzer KS(2001). Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia, 128, 237-250.
DOI URL PMID |
[20] |
King JS, Thomas RB, Strain BR(1996). Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO2, temperature and nitrogen. Tree Physiology, 16, 635-642.
DOI URL PMID |
[21] | Lee KH, Jose SB(2003). Soil respiration, fine root production and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273. |
[22] | Liu SH(刘绍辉), Fang JY(方精云), Kiyota M (1998). Soil respiration of mountainous temperate forests in Beijing, China. Acta Phytoecologica Sinica (植物生态学报), 22, 119-126. (in Chinese with English abstract) |
[23] |
Majdi H (2001). Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiology, 21, 1057-1061.
URL PMID |
[24] | Mei L(梅莉), Wang ZQ(王政权), Cheng YH(程云环), Guo DL(郭大立)(2004). A review: factors influencing fine root longevity in forest ecosystem. Acta Phytoecologica Sinica (植物生态学报), 28, 704-710. (in Chinese with English abstract) |
[25] | Norby RJ, Jackson RB(2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12. |
[26] | Ohashi M, Gyokusen K, Saito A(1999). Measurement of carbon dioxide evolution from a Japanese ceder ( Cryptomeria japonica D.Don ) forest floor using an open-flow chamber method. Forest Ecology and Management, 123, 105-114. |
[27] |
Olsson P, Linder S, Giesler R, Høgberg P(2005). Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology, 11, 1745-1753.
DOI URL |
[28] | Post WM, Emanuel WR (1982). Soil carbon pools and world life zones. Nature, 298, 156-159. |
[29] | Pregitzer KS, King JS, Burton AJ(2000). Responses of tree fine roots to temperature. New Phytologist, 147, 105-115. |
[30] | Pregitzer KS, Zak DR, Curtis PS(1995). Atomspheric CO2 soil nitrogen and turnover of fine roots. New Phytologist, 129, 579-585. |
[31] | Raich JW, Schlesinger WH(1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. |
[32] | Raich JW, Tufekcioglu A(2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90. |
[33] | Raich JW, Potter CS(1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36. |
[34] | Ryan MG, Lavigne MG, Gower ST(1997). Annual carbon cost of autotrophic respiration in boreal forest ecosystem in relation to species and climate. Journal of Geophysical Research, 102, 28871-28883. |
[35] | Schlesinger WH, Andrews JA(2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20. |
[36] | Striegl RG, Wickland KP(2001). Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest. Canadian Journal of Forest Research, 31, 1540-1550. |
[37] | Thierron V, Laudelout H(1996). Contribution of root respiration to total CO2 efflux from the soil of a deciduous forest. Canadian Journal of Forest Research, 26, 1142-1148. |
[38] | Wang CK(王传宽), Yang JY(杨金艳)(2005). Carbon dioxide fluxes from soil respiration and woody debris decomposition in boreal forests. Acta Ecologica Sinica (生态学报), 25, 633-638. (in Chinese with English abstract) |
[39] | Wang WJ(王文杰), Wang HM(王慧梅), Zu YG(祖元刚), Li XY(李雪莹), Koike T (2005). Characteristics of root, stem and soil respiration Q10 temperature coefficients in forest ecosystems. Acta Phytoecologica Sinica (植物生态学报), 29, 680-691. (in Chinese with English abstract) |
[40] |
Widén B, Majdi H(2001). Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Canadian Journal of Forest Research, 31, 786-796.
DOI URL |
[41] |
Xu M, Qi Y(2001). Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevada Forest. Global Biogeochemical Cycles, 15, 687-696.
DOI URL |
[42] | Yang YS(杨玉盛), Dong B(董彬), Xie JS(谢锦升), Chen GS(陈光水), Gao R(高人), Li L(李灵), Wang XG(王小国), Guo JF(郭剑芬)(2004). Soil respiration of forest ecosystems and its respondence to global change. Acta Ecologica Sinica (生态学报), 24, 583-591. (in Chinese with English abstract) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[5] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[6] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[7] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[8] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[9] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[10] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[11] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[12] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[13] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[14] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[15] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19