植物生态学报 ›› 2008, Vol. 32 ›› Issue (3): 622-631.DOI: 10.3773/j.issn.1005-264x.2008.03.011
收稿日期:
2006-04-03
接受日期:
2006-06-26
出版日期:
2008-04-03
发布日期:
2008-05-30
通讯作者:
孙振钧
作者简介:
*E-mail:sun108@cau.edu.Cn;基金资助:
ZHANG Rui-Qing1,2(), SUN Zhen-Jun1,*(
), WANG Chong1, YUAN Tang-Yu2
Received:
2006-04-03
Accepted:
2006-06-26
Online:
2008-04-03
Published:
2008-05-30
Contact:
SUN Zhen-Jun
摘要:
该文通过野外试验和室内模拟相结合,系统研究了西双版纳热带雨林生态系统混合凋落叶分解过程中的酶活性动态。野外试验采用网袋法(1 mm和100 μm网眼)限制土壤动物的出入,室内模拟试验采用灭菌-接种法控制生物组成,从而研究不同生物组成或食物链结构条件下,凋落叶分解过程中的酶活性变化,以及酶活性与分解进程之间的动态响应。研究结果表明,转化酶和淀粉酶在有机残体的最初分解阶段发挥重要作用,参与易分解成分的转化和分解,这些酶与凋落叶分解进程之间存在显著的负相关性,且参与分解的生物组成越简单(缩短食物链),这些酶活性越高,是微生物在分解初期对底物加以利用的关键酶类;C x酶、β-葡萄糖苷酶、木聚糖酶活性均在分解中期达到高峰,多酚氧化酶在分解后期迅速上升,对凋落叶中、后期木质素的分解起到关键性的作用,这些酶与凋落叶分解进程之间存在显著的正相关性,且参与分解的生物组成越复杂(延长食物链),这些酶活性越高,是微生物在分解后期对底物进一步利用的关键酶类;与C循环有关的酶类都可以作为有机物质分解进程的重要指标,与分解进程之间存在一定的动态响应,有机残体的分解过程实质上是一个酶解过程。
张瑞清, 孙振钧, 王冲, 袁堂玉. 西双版纳热带雨林凋落叶分解的生态过程.Ⅲ.酶活性动态. 植物生态学报, 2008, 32(3): 622-631. DOI: 10.3773/j.issn.1005-264x.2008.03.011
ZHANG Rui-Qing, SUN Zhen-Jun, WANG Chong, YUAN Tang-Yu. ECOLOGICAL PROCESS OF LEAF LITTER DECOMPOSITION IN TROPICAL RAINFOREST IN XISHUANGBANNA, SW CHINA. Ⅲ. ENZYME DYNAMICS. Chinese Journal of Plant Ecology, 2008, 32(3): 622-631. DOI: 10.3773/j.issn.1005-264x.2008.03.011
项目 Item | 2004年 | 2005年 | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 Jun. | 7月 July | 8月 Aug. | 9月 Sept. | 10月 Oct. | 11月 Nov. | 12月 Dec. | 1月 Jan. | 2月 Feb. | 3月 Mar. | |||||||||||||||||||||||
气温 Temperature (℃) | 21.5 | 23.6 | 24.7 | 25.5 | 25.2 | 25.4 | 24.2 | 22.3 | 19.8 | 15.0 | 16.8 | 19.3 | ||||||||||||||||||||||
降雨量 Precipitation (mm) | 263.0 | 779.0 | 223.9 | 79.9 | 169.0 | 204.6 | 160.1 | 56.8 | 45.8 | 0.0 | 1.5 | 0.0 |
表1 试验年度(2004年4月~2005年3月)研究地区月平均气温和降雨量
Table 1 Average monthly temperature and amount of monthly precipitation at sampling time (2004.4-2005.3) in study site of Xishuangbanna
项目 Item | 2004年 | 2005年 | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 Jun. | 7月 July | 8月 Aug. | 9月 Sept. | 10月 Oct. | 11月 Nov. | 12月 Dec. | 1月 Jan. | 2月 Feb. | 3月 Mar. | |||||||||||||||||||||||
气温 Temperature (℃) | 21.5 | 23.6 | 24.7 | 25.5 | 25.2 | 25.4 | 24.2 | 22.3 | 19.8 | 15.0 | 16.8 | 19.3 | ||||||||||||||||||||||
降雨量 Precipitation (mm) | 263.0 | 779.0 | 223.9 | 79.9 | 169.0 | 204.6 | 160.1 | 56.8 | 45.8 | 0.0 | 1.5 | 0.0 |
有机质Organic matter (g·kg-1) | 全氮Total nitrogen (g·kg-1) | C/N | pH | 容重Density (×109mg·m-3) |
---|---|---|---|---|
48.3±0.8 | 2.3±0.0 | 12.3±1.2 | 4.75±0.22 | 1.02±0.10 |
表2 研究样地土壤(0~2.5 cm)土层基本理化性质(平均值±标准误差)
Table 2 Physio-chemical properties of the top soil (0-2.5 cm) in experiment fields in Xishuangbanna (Mean±SE, n=14)
有机质Organic matter (g·kg-1) | 全氮Total nitrogen (g·kg-1) | C/N | pH | 容重Density (×109mg·m-3) |
---|---|---|---|---|
48.3±0.8 | 2.3±0.0 | 12.3±1.2 | 4.75±0.22 | 1.02±0.10 |
全碳 C (%) | 全氮 N (%) | 碳氮比 C/N ratio | 灰分 Ash (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) |
---|---|---|---|---|---|
49.1±0.22 | 1.11±0.01 | 44.3±0.16 | 7.41±0.02 | 41.29±0.06 | 28.26±0.04 |
表3 试验用材料(混合凋落叶)基本理化性质(平均值±标准误差)
Table 3 Basic properties of materials (mixed leaf litters) used in the study (Mean±SE, n=3)
全碳 C (%) | 全氮 N (%) | 碳氮比 C/N ratio | 灰分 Ash (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) |
---|---|---|---|---|---|
49.1±0.22 | 1.11±0.01 | 44.3±0.16 | 7.41±0.02 | 41.29±0.06 | 28.26±0.04 |
图1 植物样品粗酶液提取的一般流程 主要参考Criquet等(1999)的研究方法,并做了部分修改 Enzyme extraction method mainly refered to Criquet et al. (1999) with some modifications a: 酶提取剂:110.99 g无水CaCl2、0.5 ml土温80,加水定容至1 L Extraction solvent was made in addition of CaCl2 110.99 g·L-1 and Tween 80 0.5 ml·L-1 b: PVPP:交联聚乙烯基吡咯烷酮,除色剂,使用前预先加10%HCl煮沸10 min,然后用NaOH中和,加蒸馏水洗至中性,将上浮多余水分倒出,使用时稍稍搅动 Polyvinylpolypyrrolidone, used as decoloring agent c: PEG:聚乙二醇,分子量15~20 kD,浓缩剂 Polyethylene glycol, molecular mass 15-20 kD, used to concentrate the dialyzed extract
Fig.1 Flow chart for enzyme extraction from plant materials
图2 不同处理转化酶活性动态 平均值±标准偏差 Mean±SD (n=4 for field and n=3 for inoculated study) C: 大网眼网袋 Coarse mesh F: 小网眼网袋 Fine mesh M: 接种微生物 Incubated microbiota only MN: 接种微生物+线虫 Incubated microbiota and nematodes
Fig.2 Invertase activity during decomposition of leaf litters
图3 不同处理淀粉酶活性动态 平均值±标准偏差 Mean±SD (n=4 for field and n=3 for inoculated study) 图例同图2 Legends see Fig.2
Fig.3 Amylase activity during decomposition of leaf litters
图4 室内外试验不同处理酸/碱性磷酸酶活性动态 图例同图2
Fig.4 Acid and alkaline phosphatase activities during decomposition of leaf litters in field (n=4) and simulated (n=3) study Legends see Fig.2
图5 野外试验不同处理Cx酶、C1酶、β-葡萄糖苷酶、木聚糖酶、多酚氧化酶活性动态 平均值±标准偏差 Mean±SD (n=4) 图例同图2
Fig.5 Dynamics of β-1,4-endoglucanase, β-1,4-exoglucanase, β-1,4-glucosidase, xylanase and phenol oxidase activity during litter decomposition in field study Legends see Fig.2
图6 室内试验不同处理Cx酶、C1酶、β-葡萄糖苷酶、木聚糖酶、多酚氧化酶活性动态 平均值±标准偏差 Mean±SD (n=4) 图例同图2
Fig.6 Dynamics of β-1,4-endoglucanase, β-1,4-exoglucanase, β-1,4-glucosidase, xylanase and phenol oxidase activity during materials decomposition in simulated study Legends see Fig.2
酶种类 Enzyme type | 处理 Treatment | 失重率 Mass loss (%) |
---|---|---|
转化酶 Invertase | C | -0.331 |
F | -0.713** | |
MN | -0.493* | |
M | -0.745** | |
淀粉酶 Amylase | C | -0.373 |
F | -0.561* | |
MN | -0.637** | |
M | -0.059 | |
酸性磷酸酶 Acid phosphatase | C | -0.832** |
F | -0.660** | |
MN | 0.799** | |
M | 0.827** | |
碱性磷酸酶 Alkaline phosphatase | C | -0.203 |
F | 0.096 | |
MN | 0.902** | |
M | 0.246 | |
C1酶 Exoglucanase | C | -0.934** |
F | -0.904** | |
MN | -0.894** | |
M | -0.946** | |
Cx酶 Endoglucanase | C | 0.587* |
F | 0.667** | |
MN | 0.777** | |
M | 0.280 | |
β-葡萄糖苷酶 β-Glucosidase | C | 0.746** |
F | 0.912** | |
MN | 0.581* | |
M | 0.280 | |
木聚糖酶 Xylanase | C | 0.573* |
F | 0.643** | |
MN | -0.198 | |
M | 0.293 | |
多酚氧化酶 Phenol oxidase | C | 0.431 |
F | 0.335 | |
MN | 0.580* | |
M | -0.236 |
表4 酶活性与分解失重率之间的相关性
Table 4 Correlation coefficients (r) for enzyme activities and mass loss rates of decomposing materials
酶种类 Enzyme type | 处理 Treatment | 失重率 Mass loss (%) |
---|---|---|
转化酶 Invertase | C | -0.331 |
F | -0.713** | |
MN | -0.493* | |
M | -0.745** | |
淀粉酶 Amylase | C | -0.373 |
F | -0.561* | |
MN | -0.637** | |
M | -0.059 | |
酸性磷酸酶 Acid phosphatase | C | -0.832** |
F | -0.660** | |
MN | 0.799** | |
M | 0.827** | |
碱性磷酸酶 Alkaline phosphatase | C | -0.203 |
F | 0.096 | |
MN | 0.902** | |
M | 0.246 | |
C1酶 Exoglucanase | C | -0.934** |
F | -0.904** | |
MN | -0.894** | |
M | -0.946** | |
Cx酶 Endoglucanase | C | 0.587* |
F | 0.667** | |
MN | 0.777** | |
M | 0.280 | |
β-葡萄糖苷酶 β-Glucosidase | C | 0.746** |
F | 0.912** | |
MN | 0.581* | |
M | 0.280 | |
木聚糖酶 Xylanase | C | 0.573* |
F | 0.643** | |
MN | -0.198 | |
M | 0.293 | |
多酚氧化酶 Phenol oxidase | C | 0.431 |
F | 0.335 | |
MN | 0.580* | |
M | -0.236 |
[1] | Brown S, Lugo AE (1982). Storage and production of organic matter in tropical forest and their role in the global carbon cycle. Biotropica, 14,161-187. |
[2] | Burns RG (1978). Enzyme activity in soil: some theoretical and practical considerations. In: Burns RG ed. Soil Enzymes. Academic Press, London, 295-340. |
[3] | Cao M, Zhang JH, Feng ZL, Deng JW, Deng XB (1996). Tree species composition of a seasonal rain forest in Xishuangbanna, Southwest China. Tropical Ecology, 37(2),183-192. |
[4] | Criquet S, Tagger S, Vogt G, Iacazio G, Le Petit J (1999). Laccase activity of forest litter. Soil Biology and Biochemistry, 31,1239-1244. |
[5] | Cuevas E, Brown S, Lugo AE (1991). Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant and Soil, 135,257-268. |
[6] | Kandeler E, LuxhØi J, Tscherko D, Magid J (1999). Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biology and Biochemistry, 31,1171-1179. |
[7] | Ke X (柯欣), Zhao LJ (赵立军), Yin WY (尹文英) (1999). Succession in communities of soil animals during leaf litter decomposition in Cyclobalanopsis glauca forest . Zoological Research (动物学研究), 20,207-213. (in Chinese with English abstract) |
[8] | Kshattriya S, Sharma GD, Mishra RR (1992). Enzyme activities related to litter decomposition in forests of different age and altitude in North East India. Soil Biology and Biochemistry, 24,265-270. |
[9] | LuxhØi J, Magid J, Tscherko D, Kandeler E (2002). Dynamics of invertase, xylanase and coupled quality indices of decomposing green and brown plant residues. Soil Biology and Biochemistry, 34,501-508. |
[10] | Ren YH (任泳红), Cao M (曹敏), Tang JW (唐建维), Tang Y (唐勇), Zhang JH (张建侯) (1999). A comparative study on litterfall dynamics in a seasonal rain forest and a rubber plantation in Xishuangbanna, SW China. Acta Phytoecologica Sinica (植物生态学报), 23,418-425. (in Chinese with English abstract) |
[11] | Ross DJ, Roberts HS (1973). Biochemical activities in a soil profile under hard beech forest. Ⅰ. Invertase and amylase activities and relationships with other properties. New Zealand Journal of Science, 16,209-224. |
[12] | Setälä H, Haimi J, Huhta V (1988). A microcosm study on the respiration and weight loss in birch litter and raw humus as influenced by soil fauna. Biology and Fertility of Soils, 5,282-287. |
[13] | Sinsabaugh RL, Antibus RK, Linkins AE (1991). An enzymatic approach to the analysis of microbial activity during plant litter decomposition. Agriculture, Ecosystems and Environment, 34,43-54. |
[14] | Takeda H (1988). A 5 year study of pine needle litter decomposition in relation to mass loss and faunal abundances. Pedobiologia, 32,221-226. |
[15] | Wang J (王瑾), Huang JH (黄建辉) (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica (植物生态学报), 25,375-380. (in Chinese with English abstract) |
[16] | Xu GH (许光辉), Zheng HY (郑洪元) (1986). A Handbook for Soil Microbiology Analysis (土壤微生物分析方法手册). China Agriculture Press, Beijing. (in Chinese) |
[17] | Yang XD (杨效东) (2004). Dynamics and community structure of soil meso-microarthropods during leaf litter decomposition in tropical seasonal rain forests of Xishuangbanna, Yunnan. Biodiversity Science (生物多样性), 12,252-261. (in Chinese with English abstract) |
[18] | Zhang JH (张建侯), Zhang KY (张克映), Sha LQ (沙丽清), Liu YH (刘玉洪) (1994). An introduction to the permanent plots of Xishuangbanna Station of Tropical Ecology. Development of Research Network for Natural Resources,Environment and Ecology (资源生态环境网络研究动态), 5 (2),47-48. (in Chinese) |
[19] | Zhang QF (张庆费), Song YC (宋永昌), Wu HQ (吴化前), You WH (由文辉) (1999). Dynamics of litter amount and it's decomposition in different successional stage of evergreen broad-leaved forest in Tiantong, Zhejiang Province. Acta Phytoecologica Sinica (植物生态学报), 23,250-255. (in Chinese with English abstract) |
[20] | Zhang RQ (张瑞清), Sun ZJ (孙振钧), Wang C (王冲), Ge Y (葛源), Li YL (李云乐), Qiao YH (乔玉辉), Pang JZ (庞军柱), Zhang LD (张录达) (2006). Eco-process of leaf litter decomposition in tropical rain forest in Xishuangbanna, China. I. Decomposition dynamic of mixed leaf litters. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30,780-790. (in Chinese with English abstract) |
[21] | Zhang RQ (张瑞清), Sun ZJ (孙振钧), Wang C (王冲), Ge Y (葛源), Qiao YH (乔玉辉), Pang JZ (庞军柱), Yuan TY (袁堂玉) (2007). Eco-process of leaf litter decomposition in Xishuangbanna tropical rainforest, SW China. Ⅱ. Population dynamics of soil microbiota and nematodes. Acta Ecologica Sinica (生态学报), 27,640-649. (in Chinese with English abstract) |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[5] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[6] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[7] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[8] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[9] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[10] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[11] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[12] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[13] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[14] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[15] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19