植物生态学报 ›› 2010, Vol. 34 ›› Issue (2): 125-133.DOI: 10.3773/j.issn.1005-264x.2010.02.003
所属专题: 稳定同位素生态学
收稿日期:
2008-10-08
接受日期:
2009-01-21
出版日期:
2010-10-08
发布日期:
2010-02-01
通讯作者:
陈年来
作者简介:
* E-mail: chennl@gsau.edu.cn
ZHANG Peng1, WANG Gang2, ZHANG Tao1, CHEN Nian-Lai1,*()
Received:
2008-10-08
Accepted:
2009-01-21
Online:
2010-10-08
Published:
2010-02-01
Contact:
CHEN Nian-Lai
摘要:
以分布于祁连山北麓中段的两种优势乔木祁连圆柏(Sabina przewalskii)和青海云杉(Picea crassifolia)为研究对象, 分析了高山乔木叶片δ13C值对海拔(2 600-3 600 m)、土壤含水量和叶片含水量、叶片碳氮含量的响应及其机理。结果表明, 这两种乔木叶片δ13C值均随海拔升高呈增重趋势, 与海拔呈显著正相关关系(p < 0.000 1)。海拔2 600-3 600 m阳坡树种祁连圆柏叶片的δ13C值显著高于同海拔梯度阴坡树种青海云杉。祁连圆柏和青海云杉叶片的δ13C值均与年平均气温呈显著负相关关系(p < 0.000 1), 与年平均降水量呈显著正相关关系(p < 0.000 1)。祁连圆柏叶片δ13C值与土壤含水量(p < 0.000 1)、叶片含水量(p = 0.01)和叶片碳氮比(C/N) (p < 0.000 1)呈显著正相关关系, 与叶片全氮呈显著负相关关系(p < 0.000 1)。而青海云杉叶片δ13C值与土壤含水量、叶片全氮、叶片碳氮比和叶片含水量不相关。说明海拔变化引起的水热条件的改变, 尤其是温度变化对高山乔木叶片碳同位素分馏起主要作用, 但各个因子综合对高山植物叶片碳同位素分馏的作用机制可能比较复杂, 需进一步深入研究。
张鹏, 王刚, 张涛, 陈年来. 祁连山两种优势乔木叶片δ13C的海拔响应及其机理. 植物生态学报, 2010, 34(2): 125-133. DOI: 10.3773/j.issn.1005-264x.2010.02.003
ZHANG Peng, WANG Gang, ZHANG Tao, CHEN Nian-Lai. Responses of foliar δ13C in Sabina przewalskii and Picea crassifolia to altitude and its mechanism in the Qilian Mountains, China. Chinese Journal of Plant Ecology, 2010, 34(2): 125-133. DOI: 10.3773/j.issn.1005-264x.2010.02.003
样地号Plot No. | 海拔Altitude (m) | 土壤类型 Soil type | 阳坡 Sunny slope | 阴坡 Shade slope | ||||
---|---|---|---|---|---|---|---|---|
纬度 Latitude | 经度 Longitude | 树种 Tree species | 纬度 Latitude | 经度 Longitude | 树种 Tree species | |||
1 | 3 565 | 亚高山灌丛草甸土 Subalpine shrub meadows soil | 38°26.392′ N | 99°56.595′ E | 祁连圆柏 Sabina przewalskii | - | - | 青海云杉 Picea crassifolia |
2 | 3 465 | 38°26.320′ N | 99°56.567′ E | 38°25.257′ N | 99°55.497′ E | |||
3 | 3 365 | 38°26.198′ N | 99°56.306′ E | 38°25.299′ N | 99°55.495′ E | |||
4 | 3 265 | 森林灰褐土 Grey-drab forest soil | 38°26.150′ N | 99°56.202′ E | 38°25.337′ N | 99°55.554′ E | ||
5 | 3 165 | 38°26.049′ N | 99°56.099′ E | 38°25.466′ N | 99°55.647′ E | |||
6 | 3 065 | 38°26.087′ N | 99°56.767′ E | 38°25.798′ N | 99°55.740′ E | |||
7 | 2 965 | 38°26.184′ N | 99°56.477′ E | 38°26.127′ N | 99°55.388′ E | |||
8 | 2 865 | 38°26.242′ N | 99°55.194′ E | 38°26.352′ N | 99°54.887′ E | |||
9 | 2 765 | 38°26.417′ N | 99°54.900′ E | 38°26.528′ N | 99°54.440′ E | |||
10 | 2 665 | 38°26.733′ N | 99°53.929′ E | 38°26.952′ N | 99°54.050′ E |
表1 采样点基本情况
Table 1 Characteristics of sampling plots
样地号Plot No. | 海拔Altitude (m) | 土壤类型 Soil type | 阳坡 Sunny slope | 阴坡 Shade slope | ||||
---|---|---|---|---|---|---|---|---|
纬度 Latitude | 经度 Longitude | 树种 Tree species | 纬度 Latitude | 经度 Longitude | 树种 Tree species | |||
1 | 3 565 | 亚高山灌丛草甸土 Subalpine shrub meadows soil | 38°26.392′ N | 99°56.595′ E | 祁连圆柏 Sabina przewalskii | - | - | 青海云杉 Picea crassifolia |
2 | 3 465 | 38°26.320′ N | 99°56.567′ E | 38°25.257′ N | 99°55.497′ E | |||
3 | 3 365 | 38°26.198′ N | 99°56.306′ E | 38°25.299′ N | 99°55.495′ E | |||
4 | 3 265 | 森林灰褐土 Grey-drab forest soil | 38°26.150′ N | 99°56.202′ E | 38°25.337′ N | 99°55.554′ E | ||
5 | 3 165 | 38°26.049′ N | 99°56.099′ E | 38°25.466′ N | 99°55.647′ E | |||
6 | 3 065 | 38°26.087′ N | 99°56.767′ E | 38°25.798′ N | 99°55.740′ E | |||
7 | 2 965 | 38°26.184′ N | 99°56.477′ E | 38°26.127′ N | 99°55.388′ E | |||
8 | 2 865 | 38°26.242′ N | 99°55.194′ E | 38°26.352′ N | 99°54.887′ E | |||
9 | 2 765 | 38°26.417′ N | 99°54.900′ E | 38°26.528′ N | 99°54.440′ E | |||
10 | 2 665 | 38°26.733′ N | 99°53.929′ E | 38°26.952′ N | 99°54.050′ E |
图2 叶片含水量、全氮、碳氮比和土壤含水量与海拔的关系。
Fig. 2 Relationships between LWC, LTN, C/N, SWC and altitude. LWC, Leaf water content; LTN, Leaf total nitrogen; SWC, Soil water content.
图3 叶片δ13C值与叶片全氮、碳氮比、叶片含水量和土壤含水量的关系。 LTN、LWC和SWC同图2。
Fig. 3 Relationships between LTN, C/N, LWC, SWC and foliar δ13C values. LTN, LWC and SWC see Fig. 2.
[1] |
Ares A, Fownes JH (1999). Water supply regulates structure, productivity, and water use efficiency of Acacia koa in Hawaii. Oecologia, 121, 458-466.
DOI URL PMID |
[2] |
Cordell S, Goldstein D, Mueller-Dombois D, Webb D, Vitousek PM (1998). Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia, 113, 188-196.
DOI URL PMID |
[3] | Cordell S, Goldstein G, Meinzer FC, Handley LL (1999). Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient. Functional Ecology, 13, 811-818. |
[4] | Coûteaux MM, Bottner P, Anderson JM, Berg B, Bolger T, Casals P, Romanyà J, Thiéry JM, Vallejo VR (2001). Decomposition of 13C-labelled standard plant material in a latitudinal transect of European coniferous forests: differential impact of climate on the decomposition of soil organic matter compartments. Biogeochemistry, 54, 147-170. |
[5] | Chen SP (陈世苹), Bai YF (白永飞), Han XG (韩兴国) (2002). Application of stable carbon isotope techniques to ecological research. Acta Phytoecologica Sinica (植物生态学报), 26, 549-560. (in Chinese with English abstract) |
[6] | Chen SP (陈世苹), Bai YF (白永飞), Han XG (韩兴国), An JL (安吉林), Guo FC (郭富存) (2004). Variations in foliar carbon isotope composition and adaptive strategies of Carex Korshinskyi along a soil moisture gradient. Acta Phytoecologica Sinica (植物生态学报), 28, 515-522. (in Chinese with English abstract) |
[7] | Chen T (陈拓), Yang MX (杨梅学), Feng HY (冯虎元), Xu SJ (徐世健), Qiang WY (强维亚), He YQ (何元庆), An LZ (安黎哲) (2003). Spatial distribution of stable carbon isotope compositions of plant leaves in the north of the Tibetan Plateau. Journal of Glaciology and Geocryology (冰川冻土), 25, 83-87. (in Chinese with English abstract) |
[8] | Farquhar GD, O’Leary MH, Berry JA (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Austrilian Journal of Plant Physiology, 9, 121-137. |
[9] |
Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537.
DOI URL |
[10] | Gale J (1973). Availability of carbon dioxide for photosynthesis at high altitudes: theoretical considerations. Ecology, 53, 594-597. |
[11] |
Grace J, Berninger F, Nagy L (2002). Impacts of climate change on the tree line. Annals of Botany, 90, 537-544.
DOI URL PMID |
[12] |
Hultine KR, Marshall JD (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 123, 32-40.
URL PMID |
[13] | James JC, Grace J, Hoad SP (1994). Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. Journal of Ecology, 82, 297-306. |
[14] | Johnsen KH, Flanagan LB, Huber DA, Major JE (1999). Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half-diallel mating design using field- grown trees. Canadian Journal of Forest Research, 29, 1727-1735. |
[15] | Jin BW (金博文), Kang ES (康尔泗), Song KC (宋克超), Liu XD (刘贤德) (2003). Eco-hydrological function of mountain vegetation in the Hei River Basin, Northwest China. Journal of Glaciology and Geocryology (冰川冻土), 25, 580-584. (in Chinese with English abstract) |
[16] | Keeling CD (1960). The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12, 200-203. |
[17] |
Keeling CD (1961). A mechanism for cyclic enrichment of carbon-12 by terrestrial plants. Geochimica Cosmochim Acta, 24, 299-313.
DOI URL |
[18] |
Körner C, Farquhar GD, Roksandic Z (1988). A global survey of carbon isotope discrimination in plants from high altitude. Oecologia, 74, 623-632.
DOI URL PMID |
[19] |
Körner C, Neumayer M, Pelaez Menendez-Riedl S, Scheel-Smeets JA (1989). Functional morphology of mountain plants. Flora, 182, 353-383.
DOI URL |
[20] |
Körner C, Farquhar GD, Wong SC (1991). Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia, 88, 30-40.
URL PMID |
[21] |
Kloeppel DB, Gowerl ST, Treichel IW, Kharuk S (1998). Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison. Oecologia, 114, 153-159.
DOI URL PMID |
[22] |
Kogami H, Hanba YT, Kibe T, Terashima I, Masuzawa T (2001). CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant, Cell and Environment, 24, 529-538.
DOI URL |
[23] |
Lewis DC, Grant IL, Maier NA (1993). Factors affecting the interpretation and adoption of plant analysis services. Australian Journal of Experimental Agriculture, 33, 1053-1066.
DOI URL |
[24] | Li C, Liu S, Berninger F (2004). Picea seedlings show apparent acclimation to drought with increasing altitude in the eastern Himalaya. Trees, 18, 277-283. |
[25] | Liu GX (刘光琇), Chen T (陈拓), An LZ (安黎哲), Wang XL (王勋陵), Feng HY (冯虎元) (2004). The environmental significance of stable carbon isotope composition of modern plant leaves in the northern part of the Tibetan Plateau. Advances in Earth Science (地球科学进展), 19, 749-753. (in Chinese with English abstract) |
[26] | Liu XH (刘晓宏), Zhao LJ (赵良菊), Gasaw M, Gao DY (高登义), Qin DH (秦大河), Ren JW (任贾文) (2007). Foliar δ13C and δ15N values of C3 plants in the Ethiopia Rift Valley and their environmental controls. Chinese Science Bulletin (科学通报), 52, 199-206. (in Chinese) |
[27] | Ma JY, Chen T, Qiang WY, Wang G (2005). Correlations between foliar stable carbon isotope composition and environmental factors in desert plant Reaumuria soongorica (Pall.) Maxim. Journal of Integrative Plant Biology, 47, 1065-1073. |
[28] | Magnani F, Borghetti M (1995). Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica. Plant, Cell and Environment, 18, 689-696. |
[29] | McCarroll D, Loader NJ (2004). Stable isotopes in tree rings. Quaternary Science Reviews, 23, 771-801. |
[30] | Milburn JA (1979). Water Flow in Plants. Logman, London. |
[31] | Morecroft MD, Woodward FI (1990). Experimental investigations on the environmental determinations of δ13C at different altitudes. Journal of Experimental Botany, 41, 1303-1308. |
[32] | Poorter H, Evans JR (1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 166, 26-37. |
[33] | Piao HC (朴河春), Zhu JM (朱建明), Zhu SF (朱书法), Yu DL (余登利), Ran JC (冉景丞) (2004). Altitudinal variations of nutrient concentrations and carbon isotope compositions in a C3 plant and the effects of nutrient interactions on carbon isotope discrimination in limestone areas of Southwest China. Advances in Earth Science (地球科学进展), 19(Suppl.), 412-418. (in Chinese with English abstract) |
[34] |
Reich PB, Walters MB, Kloeppel BD, Ellsworth DS (1995). Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia, 104, 24-30.
DOI URL PMID |
[35] | Raffalli-Delerce G, Masson-Delmotte V, Dupouey JL, Stievenard M, Breda N, Moisselin JM (2004). Reconstruction of summer droughts using tree-ring cellulose isotopes: a calibration study with living oaks from Brittany (western France). Tellus, Chemical and Physical Metallurgy, 56B, 160-174. |
[36] | Schleser GH, Helle G, Lücke A, Vos H (1999). Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quaternary Science Reviews, 18, 927-943. |
[37] | Su B (苏波), Han XG (韩兴国), Li LH (李凌浩), Huang JH (黄建辉), Bai YF (白永飞), Qu CM (渠春梅) (2000). Responses of δ13C value and water use efficiency of plant species to environmental gradients along the grassland zone of Northeast China transect. Acta Phytoecologica Sinica (植物生态学报), 24, 648-655. (in Chinese with English abstract) |
[38] |
Swap RJ, Aranibar JN, Dowty PR, Gilhooly III WP, Macko SA (2004). Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Global Change Biology, 10, 350-358.
DOI URL |
[39] | Shi ZM (史作民), Cheng RM (程瑞梅), Liu SR (刘世荣) (2004). Response of leaf δ13C to altitudinal gradients and its mechanism. Acta Ecologica Sinica (生态学报), 24, 2901-2906. (in Chinese with English abstract) |
[40] |
Vitousek PM, Field CB, Matson PA (1990). Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia, 84, 362-370.
DOI URL |
[41] |
van de Water PK, Leavitt SW, Betancourt JL (2002). Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest United States. Oecologia, 132, 332-343.
DOI URL PMID |
[42] | Wang JY (王金叶), Wang YL (王艺林), Jin BW (金博文), Che KJ (车克钧) (2001). Studies on regulating function of forest hydrology and microclimate in arid and semi-arid area of west China. Scientia Silvae Sinicae (林业科学), 37(5), 120-125. (in Chinese with English abstract) |
[43] | Wang L (旺罗), Lü HY (吕厚元), Wu NQ (吴乃琴), Wu HB (吴海滨), Liu DS (刘东生) (2003). Altitudinal trends of stable carbon isotope composition for poeceae in Qinhai-Xizang Plateau. Quaternary Sciences (第四纪研究), 23, 573-580. (in Chinese with English abstract) |
[44] | Xu SJ (徐世健), Chen T (陈拓), Feng HY (冯虎元), An LZ (安黎哲), Qiang WY (强维亚), Wang XL (王勋陵) (2002). Environment analysis of foliar δ13C spatial differentiation in the region of upper Urumchi valley Xinjiang. Progress in Natural Science (自然科学进展), 12, 617-620. (in Chinese) |
[1] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[2] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[3] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[4] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[5] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[6] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[7] | 蒙文萍, 戴全厚, 冉景丞. 苔藓植物岩溶作用研究进展[J]. 植物生态学报, 2019, 43(5): 396-407. |
[8] | 张富广, 曾彪, 杨太保. 气候变化背景下近30年祁连山高寒荒漠分布时空变化[J]. 植物生态学报, 2019, 43(4): 305-319. |
[9] | 叶子飘, 段世华, 安婷, 康华靖. 最大电子传递速率的确定及其对电子流分配的影响[J]. 植物生态学报, 2018, 42(4): 498-507. |
[10] | 杨军军, 封建民, 何志斌. 基于热比率法的青海云杉林蒸腾量估算[J]. 植物生态学报, 2018, 42(2): 195-201. |
[11] | 宋文琦, 朱良军, 张旭, 王晓春, 张远东. 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较[J]. 植物生态学报, 2018, 42(1): 66-77. |
[12] | 杜晶, 赵成章, 宋清华, 史元春, 王继伟, 陈静. 祁连山北坡霸王枝-叶性状关系的个体大小差异[J]. 植物生态学报, 2016, 40(3): 212-220. |
[13] | 叶子飘, 胡文海, 闫小红. 光系统II实际光化学量子效率对光的响应模型的比较[J]. 植物生态学报, 2016, 40(11): 1208-1217. |
[14] | 侯兆疆, 赵成章, 李钰, 张茜, 马小丽. 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系[J]. 植物生态学报, 2014, 38(3): 281-288. |
[15] | 叶子飘,胡文海,肖宜安,樊大勇,尹建华,段世华,闫小红,贺俐,张斯斯. 光合电子流对光响应的机理模型及其应用[J]. 植物生态学报, 2014, 38(11): 1241-1249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19