植物生态学报 ›› 2011, Vol. 35 ›› Issue (3): 275-283.DOI: 10.3724/SP.J.1258.2011.00275
收稿日期:
2010-05-31
接受日期:
2010-11-12
出版日期:
2011-05-31
发布日期:
2011-03-02
作者简介:
* E-mail: lw076@163.com
LIU Wei1,2,*(), WANG Ji-Ming3, WANG Zhi-Ping1
Received:
2010-05-31
Accepted:
2010-11-12
Online:
2011-05-31
Published:
2011-03-02
摘要:
甲烷(CH4)是仅次于CO2的重要温室气体。内蒙古草原是欧亚温带草原的重要类型, 具有典型的生态地域代表性。该文以内蒙古温带典型草原为研究对象, 通过人工剔除植物种的方法来确定群落中的植物功能型, 并应用静态箱技术, 观测土壤CH4的吸收, 以理解植物功能型对土壤CH4吸收的影响。结果表明: 1)土壤CH4的吸收受温度和水分变化的影响, 具有明显的季节差异, 且与温度显著相关。2)在2008年和2009年所测的大部分月份中, 植物功能型的土壤CH4吸收量之间没有显著差异; 然而在植物生长旺季(8月), 不同植物功能型的土壤CH4吸收量之间存在显著差异, 多年生丛生禾草的土壤CH4吸收量最小。3)处理中一、二年生植物、多年生杂类草的存在能够增加土壤CH4的吸收量, 而处理中多年生根茎类禾草、多年生丛生禾草的存在对土壤CH4吸收的影响不大。这可能是因为, 植物功能型影响土壤的微生物代谢和环境因子, 进而影响土壤CH4吸收量。该试验说明, 在痕量气体层面上, 植物功能型组成在生态系统功能中具有重要作用, 特别是群落中的亚优势种和伴生种(一、二年生植物、多年生杂类草), 通过调控土壤微生物和环境因子, 对地-气的CH4交换产生重要影响。
刘伟, 王继明, 王智平. 内蒙古典型草原植物功能型对土壤甲烷吸收的影响. 植物生态学报, 2011, 35(3): 275-283. DOI: 10.3724/SP.J.1258.2011.00275
LIU Wei, WANG Ji-Ming, WANG Zhi-Ping. Plant functional type effects on methane uptake by soils in typical grasslands of Inner Mongolia. Chinese Journal of Plant Ecology, 2011, 35(3): 275-283. DOI: 10.3724/SP.J.1258.2011.00275
植物功能型数 Number of PFTs | 植物功能型组合 Combination of PFTs |
---|---|
0 1 2 3 4 | BL PR, PB, PF, AB PR + PB, PR + PF, PR + AB, PB + PF, PB + AB, PF + AB PR + PB + PF, PR + PB + AB, PR + PF + AB, PB + PF + AB CK (PR + PB + PF + AB) |
表1 植物功能型组合
Table 1 Combination of plant functional types (PFTs)
植物功能型数 Number of PFTs | 植物功能型组合 Combination of PFTs |
---|---|
0 1 2 3 4 | BL PR, PB, PF, AB PR + PB, PR + PF, PR + AB, PB + PF, PB + AB, PF + AB PR + PB + PF, PR + PB + AB, PR + PF + AB, PB + PF + AB CK (PR + PB + PF + AB) |
图1 裸地(BL)和对照(CK)的土壤CH4吸收(A) (平均值±标准误差, n = 3)、降雨量(B)和月平均气温(C)的季节变化。*表示BL与CK的土壤CH4吸收量差异显著(p < 0.05)。
Fig. 1 Seasonal variation of soil CH4 uptake of bare land (BL) and control (CK) (A) (mean ± SE, n = 3), precipitation (B), and monthly average air temperature (C). * represents significant differences (p < 0.05) in soil CH4 uptake between BL and CK.
F | p | |
---|---|---|
植物功能型(PFT) 取样时间(D) 植物功能型×取样时间(PFT × D) | 1.38 58.81 1.10 | NS ** * |
表2 2008年9-11月和2009年5-8月单一植物功能型的土壤CH4吸收的重复测量方差分析
Table 2 Repeated measures ANOVA of soil CH4 uptake affected by plant functional type (PFT) over September- November, 2008 and May-August, 2009
F | p | |
---|---|---|
植物功能型(PFT) 取样时间(D) 植物功能型×取样时间(PFT × D) | 1.38 58.81 1.10 | NS ** * |
图2 单个植物功能型(PR、PB、PF或AB)的土壤CH4吸收量(平均值±标准误差, n = 3)。A, 2008年。B, 2009年。不同字母表示单个植物功能型处理间的土壤CH4吸收量存在显著差异(p < 0.05)。AB, 一、二年生植物; PB, 多年生丛生禾草; PF, 多年生杂类草; PR, 多年生根茎类禾草。
Fig. 2 Soil CH4 uptake of PR, PB, PF, or AB (mean ± SE, n = 3). A, 2008. B, 2009. Different letters represent significant differences (p < 0.05) in soil CH4 uptake between plant functional types. AB, annuals/biennials; PB, perennial bunchgrass; PF, perennial forbs; PR, perennial rhizome forbs.
图3 多个植物功能型的土壤CH4吸收量(平均值±标准误差)。A、B分别为测定的各月中含有2个或3个植物功能型的土壤CH4吸收量。不同字母表示处理间存在显著差异(p < 0.05)。AB, 一、二年生植物; PB, 多年生丛生禾草; PF, 多年生杂类草; PR, 多年生根茎类禾草。
Fig. 3 Soil CH4 uptake of two or three plant functional types (PFTs) (mean ± SE, n = 3). (A) and (B) show soil CH4 uptake in two or three PFTs, respectively. Different letters represent significant differences (p < 0.05) between treatments. AB, annuals/biennials; PB, perennial bunchgrass; PF, perennial forbs; PR, perennial rhizome forbs.
图4 群落中保留/去除植物功能型PR、PB、PF或AB对土壤CH4吸收的影响。A、B、C、D分别为保留/去除PR、PB、PF或AB的土壤CH4吸收量(平均值±标准误差, n = 24)。以PR为例, 保留PR的处理为CK (PR+PB+PF+AB)、PR+PF+AB、PR+PB+AB、PR+PB+PF、PR+AB、PR+PF、PR+PB和PR, 去除PR的处理为PB+PF+AB、PF+AB、PB+AB、PB+PF、AB、PF、PB和BL。对两组处理的CH4吸收量进行比较。*表示保留与去除植物功能型的处理间土壤CH4吸收量存在显著差异(p < 0.05)。AB、BL、CE、PB、PF和PR见表1。
Fig. 4 Effect of plant communities with/without PR, PB, PF, or AB on soil CH4 uptake (mean ± SE, n = 24). A, B, C and D show soil CH4 uptake in the treatments of PR, PB, PF and AB, respectively. For example, plant communities with PR include CK (PR+PB+PF+AB), PR+PF+AB, PR+PB+AB, PR+PB+PF, PR+AB, PR+PF, PR+PB, and PR. While plant communities without PR include PB+PF+AB, PF+AB, PB+AB, PB+PF, AB, PF, PB, and BL. Soil CH4 uptake of two groups were compared. * represents significant differences (p < 0.05) between each other. AB, BL, CK, PB, PF, and PR see Table 1.
[1] | Bai YF (白永飞), Xu ZX (徐志信) (1994). Study on dynamics of growing of 9 herbage in typical grassland. Grassland of China (中国草地), 6, 21-27. (in Chinese with English abstract) |
[2] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[3] |
Bender M, Conrad R (1995). Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology and Biochemistry, 27, 1517-1527.
DOI URL |
[4] |
Cao GM, Xu XL, Long RJ, Wang QL, Wang CT, Du YG, Zhao XQ (2008). Methane emissions by alpine plant comm- unities in the Qinghai-Tibet Plateau. Biology Letters, 4, 681-684.
DOI URL PMID |
[5] |
Chapin FS, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997). Biotic control over the functioning of ecosystems. Science, 277, 500-504.
DOI URL |
[6] |
Chasar LS, Chanton JP, Glaser PH, Siegel DI (2000). Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial lake agassiz peatland complex. Annals of Botany, 86, 655-663.
DOI URL |
[7] |
Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75.
DOI URL |
[8] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[9] | Cui XY (崔骁勇), Chen ZZ (陈佐忠), Du ZC (杜占池) (2001). Study on light- and water-use characteristics of main plants in semiarid steppe. Acta Prataculturae Sinica (草业学报), 10(2), 14-21. (in Chinese with English abstract) |
[10] |
de Deyn GB, Cornelissen HC, Bardgett RD (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516-531.
DOI URL PMID |
[11] |
Epstein HE, Burke IC, Mosier AR, Hutchinson GL (1998). Plant functional type effects on trace gas fluxes in the shortgrass steppe. Biogeochemistry, 42, 145-168.
DOI URL |
[12] |
Hättenschwiler S, Tiunov AV, Scheu S (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology Evolution and Systematics, 36, 191-218.
DOI URL |
[13] |
Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000). Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos, 90, 357-371.
DOI URL |
[14] |
Hooper DU, Vitousek PM (1997). The effects of plant composition and diversity on ecosystem processes. Science, 277, 1302-1305.
DOI URL |
[15] | IPCC (Intergovernmental Panel on Climate Change)(2007). Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[16] | Ji BM (纪宝明), Wang YF (王艳芬), Li XZ (李香真), Wang YS (王跃思), Chen ZZ (陈佐忠), Zheng XH (郑循华) (2001). CH4 and CO2 concentration in soils of the major grasslands of the Xilin River Basin of Inner Mongolia. Acta Phytoecologica Sinica (植物生态学报), 25, 371-374. (in Chinese with English abstract) |
[17] |
LeCain DR, Morgan JA, Schuman GE, Reeder JD, Hart RH (2002). Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado. Agriculture, Ecosystems and Environment, 93, 421-435.
DOI URL |
[18] |
Liu CY, Holst J, Bruggemann N, Butterbach-Bahl K, Yao ZS, Yue J, Han SH, Han XG, Krummelbein J, Horn R, Zheng XH (2007). Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment, 41, 5948-5958.
DOI URL |
[19] |
Liu CY, Holst J, Yao ZS, Bruggemann N, Butterbach-Bahl K, Han SH, Han XG, Tas B, Susenbeth A, Zheng XH (2009). Growing season methane budget of an Inner Mongolian steppe. Atmospheric Environment, 43, 3086-3095.
DOI URL |
[20] |
Niklaus PA, Wardle DA, Tate KR (2006). Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils. Plant and Soil, 282, 83-98.
DOI URL |
[21] | Sun HL (孙鸿烈) (2005). Ecosystem of China (中国生态系统). Science Press, Beijing. (in Chinese) |
[22] |
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[23] |
Wang SP, Yang XX, Lin XW, Hu YG, Luo CY, Xu GP, Zhang ZH, Su AL, Chang XF, Chao ZG, Duan JC (2009a). Methane emission by plant communities in an alpine meadow on the Qinghai-Tibetan Plateau: a new experimental study of alpine meadows and oat pasture. Biology Letters, 5, 535-538.
DOI URL PMID |
[24] | Wang YF (王艳芬), Ji BM (纪宝明), Chen ZZ (陈佐忠), Ojma D (2000). Preliminary results of a study on CH4 flux in Xilin River Basin steppe under different grazing intensities. Acta Phytoecologica Sinica (植物生态学报), 24, 693-696. (in Chinese with English abstract) |
[25] | Wang YS, Hu YQ, Ji BM, Liu GR, Xue M (2003). An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in semiarid grassland. Advances in Atmospheric Sciences, 20, 119-127. |
[26] |
Wang YS, Xue M, Zheng XH, Ji BM, Du R, Wang YF (2005a). Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere, 58, 205-215.
DOI URL |
[27] | Wang ZP (王智平), Hu CS (胡春胜), Yang JR (杨居荣) (2003). Effect of inorganic nitrogen on CH4 oxidation in soils. Chinese Journal of Applied Ecology (应用生态学报), 14, 305-309. (in Chinese with English abstract) |
[28] |
Wang ZP, Han XG, Li LH, Chen QS, Duan Y, Cheng WX (2005b). Methane emission from small wetlands and implications for semiarid region budgets. Journal of Geophysical Research, 110, D13304, doi: 10.1029/2004-JD005548.
DOI URL |
[29] |
Wang ZP, Song Y, Gulledge J, Yu Q, Liu HS, Han XG (2009b). China’s grazed temperate grasslands are a net source of atmospheric methane. Atmospheric Environment, 43, 2148-2153.
DOI URL |
[30] |
Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009). Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Functional Ecology, 23, 454-462.
DOI URL |
[31] |
Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A (1999). Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs, 69, 535-568.
DOI URL |
[32] |
Wardle DA, Zackrisson O (2005). Effects of species and functional group loss on island ecosystem properties. Nature, 435, 806-810.
DOI URL |
[33] | Wei ZJ (卫智军), Gao YD (高雅代), Yuan XD (袁晓冬), Meng R (蒙荣), Ji JP (纪家鹏) (2003). Response of population feature to different grazing systems in typical steppe. Grassland of China (中国草地), 25(6), 1-5. (in Chinese with English abstract) |
[34] | West AE, Brooks PD, Fisk MC, Smith LK, Holland EA, Jaeger CH III, Babcock S, Lai RS, Schmidt SK (1999). Landscape patterns of CH4 flux in an alpine tundra ecosystem. Biogeochemistry, 45, 243-264. |
[1] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[2] | 肖兰, 董标, 张琳婷, 邓传远, 李霞, 姜德刚, 林勇明. 渤海无居民海岛主要植被类型群落特征[J]. 植物生态学报, 2024, 48(1): 127-134. |
[3] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[4] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[5] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[6] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[7] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[8] | 朱芩, 宁盼, 侯琳, 郝家田, 胡云云. 三江源地区刺柏属植物群落类型特征[J]. 植物生态学报, 2022, 46(1): 114-122. |
[9] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[10] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[11] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
[12] | 于燕妹, 黄林娟, 薛跃规. 广西大石围天坑群不同植物群落的特征[J]. 植物生态学报, 2021, 45(1): 96-103. |
[13] | 魏杰, 陈昌华, 王晶苑, 温学发. 箱式通量观测技术和方法的理论假设及其应用进展[J]. 植物生态学报, 2020, 44(4): 318-329. |
[14] | 赵佳玉, 肖薇, 张弥, 王晶苑, 温学发, 李旭辉. 通量梯度法在温室气体及同位素通量观测研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 305-317. |
[15] | 郭柯, 方精云, 王国宏, 唐志尧, 谢宗强, 沈泽昊, 王仁卿, 强胜, 梁存柱, 达良俊, 于丹. 中国植被分类系统修订方案[J]. 植物生态学报, 2020, 44(2): 111-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19