植物生态学报 ›› 2012, Vol. 36 ›› Issue (6): 471-482.DOI: 10.3724/SP.J.1258.2012.00471
所属专题: 全球变化与生态系统
• 研究论文 • 下一篇
赵红梅1,2,3,*, 黄刚1, 马健1, 李彦1,**(), 周丽1,2,3
收稿日期:
2011-12-19
接受日期:
2012-03-27
出版日期:
2012-12-19
发布日期:
2012-06-04
通讯作者:
赵红梅,李彦
作者简介:
*(*E-mail:liyan@ms.xjb.ac.cn)
ZHAO Hong-Mei1,2,3,*, HUANG Gang1, MA Jian1, LI Yan1,**(), ZHOU Li1,2,3
Received:
2011-12-19
Accepted:
2012-03-27
Online:
2012-12-19
Published:
2012-06-04
Contact:
ZHAO Hong-Mei,LI Yan
摘要:
为探讨季节性降水增加对荒漠生态系统凋落物分解的影响, 在古尔班通古特沙漠南缘, 选择粗柄独尾草(Eremurus inderiensis)叶、尖喙牻牛儿苗(Erodium oxyrrhynchum)叶、尖喙牻牛儿苗茎、沙漠绢蒿(Seriphidium santolinum)茎4种凋落物样品, 在2009-2011年研究了模拟季节降水增加(冬春增雪、夏季增水)和自然降水处理下凋落物的分解。持续2年的分解实验表明: (1)各组分凋落物的质量损失过程可以用负指数衰减方程较好地拟合(R2> 0.90); 经过637天的分解, 各组分凋落物质量残留率在自然降水、冬春增雪、夏季增水处理下均无显著性差异(p > 0.05)。粗柄独尾草叶、尖喙牻牛儿苗叶、尖喙牻牛儿苗茎、沙漠绢蒿茎在自然降水处理下的质量残留率分别为40.59%、35.50%、36.00%和63.96%; (2)各组分凋落物的质量残留率与N残留率显著正相关, 凋落物N的损失快于其质量损失, 且初始N含量与分解速率显著正相关(r = 0.60, p = 0.038), C/N解释了71%的地面凋落物分解速率。研究表明, 季节性的短暂降水增加对荒漠区地表凋落物分解没有显著影响, 凋落物初始化学组成是预测荒漠区地表凋落物分解的重要因素。
赵红梅, 黄刚, 马健, 李彦, 周丽. 荒漠区地表凋落物分解对季节性降水增加的响应. 植物生态学报, 2012, 36(6): 471-482. DOI: 10.3724/SP.J.1258.2012.00471
ZHAO Hong-Mei, HUANG Gang, MA Jian, LI Yan, ZHOU Li. Responses of surface litter decomposition to seasonal water addition in desert. Chinese Journal of Plant Ecology, 2012, 36(6): 471-482. DOI: 10.3724/SP.J.1258.2012.00471
图1 古尔班通古特沙漠月降水量和月平均气温的变化(2009年10月-2011年8月)。
Fig. 1 Variations of monthly precipitation and monthly average air temperature in the Gurbantunggut Desert from October 2009 to August 2011.
凋落物类型 Litter type | C (%) | N (%) | P (%) | C/N | C/P |
---|---|---|---|---|---|
粗柄独尾草叶 Eremurus inderiensis leaf | 36.627 ± 4.504a | 0.694 ± 0.055a | 0.064 ± 0.001a | 53 ± 8a | 571 ± 76a |
尖喙牻牛儿苗叶 Erodium oxyrrhynchum leaf | 40.786 ± 4.686a | 2.117 ± 0.037b | 0.143 ± 0.001b | 19 ± 2b | 285 ± 33b |
尖喙牻牛儿苗茎 Erodium oxyrrhynchum stem | 40.614 ± 3.005a | 1.039 ± 0.134c | 0.132 ± 0.016b | 39 ± 3c | 309 ± 11b |
沙漠绢蒿茎 Seriphidium santolinum stem | 41.260 ± 5.104a | 0.540 ± 0.015d | 0.063 ± 0.0002a | 76 ± 8d | 657 ± 83a |
表1 凋落物的初始化学组成(平均值±标准偏差)
Table 1 Initial chemical composition of litters (mean ± SD)
凋落物类型 Litter type | C (%) | N (%) | P (%) | C/N | C/P |
---|---|---|---|---|---|
粗柄独尾草叶 Eremurus inderiensis leaf | 36.627 ± 4.504a | 0.694 ± 0.055a | 0.064 ± 0.001a | 53 ± 8a | 571 ± 76a |
尖喙牻牛儿苗叶 Erodium oxyrrhynchum leaf | 40.786 ± 4.686a | 2.117 ± 0.037b | 0.143 ± 0.001b | 19 ± 2b | 285 ± 33b |
尖喙牻牛儿苗茎 Erodium oxyrrhynchum stem | 40.614 ± 3.005a | 1.039 ± 0.134c | 0.132 ± 0.016b | 39 ± 3c | 309 ± 11b |
沙漠绢蒿茎 Seriphidium santolinum stem | 41.260 ± 5.104a | 0.540 ± 0.015d | 0.063 ± 0.0002a | 76 ± 8d | 657 ± 83a |
图3 不同处理下凋落物质量残留率的变化。 A, 粗柄独尾草叶。B, 尖喙牻牛儿苗叶。C, 尖喙牻牛儿苗茎。D, 沙漠绢蒿茎。Treat.表示处理, Time表示分解时间, Tr × Time表示处理与分解时间的交互效应, 星号和ns表示处理、分解时间及处理与分解时间交互效应的差异显著性(***, p < 0.001, ns, p > 0.05)。
Fig. 3 Changes of litter mass remaining under different treatments. A, Eremurus inderiensis leaf. B, Erodium oxyrrhynchum leaf. C, Erodium oxyrrhynchum stem. D, Seriphi- dium santolinum stem. Asterisks and ns are the statistical significance for the treatments (Treat.), decomposition time (Time) and interaction of treatment and decomposition time (Tr × Time) (***, p < 0.001, ns, p > 0.05).
凋落物类型 Litter type | 处理 Treatment | 负指数衰减模型 Negative exponential decomposition model | 决定系数R2 Determination coefficient |
---|---|---|---|
粗柄独尾草叶 Eremurus inderiensis leaf | 对照 Control | y = 93.482e-0.521t | 0.960 |
冬春增雪 Snow addition in winter-spring | y = 96.339e-0.560t | 0.977 | |
夏季增水 Water addition in summer | y = 93.478e-0.510t | 0.979 | |
尖喙牻牛儿苗叶 Erodium oxyrrhynchum leaf | 对照 Control | y = 95.944e-0.577t | 0.980 |
冬春增雪 Snow addition in winter-spring | y = 91.872e-0.491t | 0.942 | |
夏季增水 Water addition in summer | y = 98.261e-0.651t | 0.989 | |
尖喙牻牛儿苗茎 Erodium oxyrrhynchum stem | 对照 Control | y = 105.036e-0.556t | 0.943 |
冬春增雪 Snow addition in winter-spring | y = 103.101e-0.485t | 0.972 | |
夏季增水 Water addition in summer | y = 102.283e-0.541t | 0.989 | |
沙漠绢蒿茎 Seriphidium santolinum stem | 对照 Control | y = 98.943e-0.238t | 0.976 |
冬春增雪 Snow addition in winter-spring | y = 98.605e-0.223t | 0.977 | |
夏季增水 Water addition in summer | y = 102.283e-0.290t | 0.988 |
表2 凋落物质量残留率的负指数方程
Table 2 Negative exponential equations of mass remaining of litters
凋落物类型 Litter type | 处理 Treatment | 负指数衰减模型 Negative exponential decomposition model | 决定系数R2 Determination coefficient |
---|---|---|---|
粗柄独尾草叶 Eremurus inderiensis leaf | 对照 Control | y = 93.482e-0.521t | 0.960 |
冬春增雪 Snow addition in winter-spring | y = 96.339e-0.560t | 0.977 | |
夏季增水 Water addition in summer | y = 93.478e-0.510t | 0.979 | |
尖喙牻牛儿苗叶 Erodium oxyrrhynchum leaf | 对照 Control | y = 95.944e-0.577t | 0.980 |
冬春增雪 Snow addition in winter-spring | y = 91.872e-0.491t | 0.942 | |
夏季增水 Water addition in summer | y = 98.261e-0.651t | 0.989 | |
尖喙牻牛儿苗茎 Erodium oxyrrhynchum stem | 对照 Control | y = 105.036e-0.556t | 0.943 |
冬春增雪 Snow addition in winter-spring | y = 103.101e-0.485t | 0.972 | |
夏季增水 Water addition in summer | y = 102.283e-0.541t | 0.989 | |
沙漠绢蒿茎 Seriphidium santolinum stem | 对照 Control | y = 98.943e-0.238t | 0.976 |
冬春增雪 Snow addition in winter-spring | y = 98.605e-0.223t | 0.977 | |
夏季增水 Water addition in summer | y = 102.283e-0.290t | 0.988 |
因素 Factor | 平方和 Sum of squares | 自由度 df | 均 方 Mean square | F | p |
---|---|---|---|---|---|
分解时间 Decomposition time | 37 670.821 | 3.5 | 10 856.361 | 407.531 | <0.001 |
物种 Species | 27 082.289 | 3.0 | 9 027.430 | 152.324 | <0.001 |
处理 Treatment | 227.389 | 2.0 | 113.694 | 1.918 | 0.159 |
分解时间×物种 Decomposition time × species | 1 861.668 | 10.4 | 178.838 | 6.713 | <0.001 |
分解时间×处理 Decomposition time × treatment | 353.313 | 6.9 | 50.911 | 1.911 | 0.072 |
物种×处理 Species × treatment | 170.258 | 6.0 | 28.376 | 0.479 | 0.820 |
分解时间×物种×处理 Decomposition time × species × treatment | 839.802 | 20.8 | 40.337 | 1.514 | 0.081 |
表3 凋落物质量残留率的ANOVA结果
Table 3 ANOVA results of mass remaining in litters
因素 Factor | 平方和 Sum of squares | 自由度 df | 均 方 Mean square | F | p |
---|---|---|---|---|---|
分解时间 Decomposition time | 37 670.821 | 3.5 | 10 856.361 | 407.531 | <0.001 |
物种 Species | 27 082.289 | 3.0 | 9 027.430 | 152.324 | <0.001 |
处理 Treatment | 227.389 | 2.0 | 113.694 | 1.918 | 0.159 |
分解时间×物种 Decomposition time × species | 1 861.668 | 10.4 | 178.838 | 6.713 | <0.001 |
分解时间×处理 Decomposition time × treatment | 353.313 | 6.9 | 50.911 | 1.911 | 0.072 |
物种×处理 Species × treatment | 170.258 | 6.0 | 28.376 | 0.479 | 0.820 |
分解时间×物种×处理 Decomposition time × species × treatment | 839.802 | 20.8 | 40.337 | 1.514 | 0.081 |
图4 不同处理凋落物N残留率的变化。 A, 粗柄独尾草叶。B, 尖喙牻牛儿苗叶。C, 尖喙牻牛儿苗茎。D, 沙漠绢蒿茎。Treat.表示处理, Time表示分解时间, Tr × Time表示处理与分解时间的交互效应, 星号和ns表示处理、分解时间及处理与分解时间交互效应的差异显著性(**, p < 0.01, ***, p < 0.001, ns, p > 0.05)。
Fig. 4 Changes of N remaining in litters under different treatments. A, Eremurus inderiensis leaf. B, Erodium oxyrrhynchum leaf. C, Erodium oxyrrhynchum stem. D, Seriphidium santolinum stem. Asterisks and ns are the statistical significance for the treatments (Treat.), decomposition time (Time) and interaction of treatment and decomposition time (Tr × Time) (**, p < 0.01, ***, p < 0.001, ns, p > 0.05).
图5 不同处理下凋落物质量残留率与N残留率的关系。 A, 粗柄独尾草叶。B, 尖喙牻牛儿苗叶。C, 尖喙牻牛儿苗茎。D, 沙漠绢蒿茎。r1、r2和r3分别表示对照、冬春增雪和夏季增水处理下线性回归拟合结果的相关系数(*, p < 0.05; **, p < 0.01)。
Fig. 5 Relationships between litter mass remaining and nitrogen (N) remaining under different treatments. A, Eremurus inderiensis leaf. B, Erodium oxyrrhynchum leaf. C, Erodium oxyrrhynchum stem. D, Seriphidium santolinum stem. r1, r2 and r3 represent correlation coefficient using simple linear regression to fit the control, snow addition in winter-spring and water addition in summer, respectively (*, p < 0.05; **, p < 0.01).
图6 凋落物质量残留率与N残留率的关系。r1、r2、r3和r4分别表示粗柄独尾草叶、尖喙牻牛儿苗叶、尖喙牻牛儿苗茎、沙漠绢蒿茎线性回归拟合结果的相关系数。 星号表示质量残留率与N残留率的相关性(**, p < 0.01)。
Fig. 6 Relationships between litter mass remaining and litter nitrogen remaining. r1, r2, r3 and r4 represent correlation coefficients using simple linear regression to fit the Eremurus inderiensis leaf, Erodium oxyrrhynchum leaf, Erodium oxyrrhynchum stem and Seriphidium santolinum stem, respectively. Asterisks denote significant differences between litter mass remaining and nitrogen remaining (**, p < 0.01).
图7 凋落物分解速率和初始C:N的关系。 加号表示凋落物的初始C:N。星号表示分解速率与初始C:N的相关性(**, p < 0.01)。
Fig. 7 Relationships between decomposition rate and initial C:N of all litters. Plus sign (+) represents initial C:N of litters. Asterisks denote significant differences between decomposition rate and initial C:N (**, p < 0.01).
图8 古尔班通古特沙漠的日最高气温和日最低气温的变化(2010年和2011年的3月15日-4月15日)。
Fig. 8 Variations of daily maximum air temperature and daily minimum air temperature in the Gurbantunggut Desert from March 15th to April 15th in 2010 and 2011.
[1] | Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. |
[2] | Aerts R, de Caluwe H (1997). Nutritional and plant mediated controls on leaf litter decomposition of Carex species. Ecology, 78, 244-260. |
[3] |
Austin AT, Ballaré CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107, 4618-4622.
DOI URL PMID |
[4] |
Ausin AT, Vitousek PM (2000). Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. Journal of Ecology, 88, 129-138.
DOI URL |
[5] |
Austin AT, Vivanco L (2006). Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442, 555-558.
URL PMID |
[6] |
Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta, DA, Schaeffer SM (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
URL PMID |
[7] | Berg B, Laskowski R (2006). Litter Decomposition: a Guide to Carbon and Nutrient Turnover. Academic Press, London. |
[8] | Brandt LA, King JY, Milchunas DG (2007). Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biology, 13, 2193-2205. |
[9] | Chapin FS III, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. 129-144. |
[10] | Cotrufo MF, Inescon P (1995). Effects of enhanced atmosphere CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula pendula Roth. and Picea sitchensis (Bong.) Carr. Plant and Soil, 170, 267-277. |
[11] | Epstein HE, Burke IC, Lauenroth WK (2002). Regional patterns of decomposition and primary production rates in the U.S. great plains: regional ecological analysis. Ecology, 83, 320-327. |
[12] | Fisher FM, Freckman DW, Whitford WG (1990). Decomposition and soil nitrogen availability in Chihuahuan Desert field microcosms. Soil Biology & Biochemistry, 22, 241-249. |
[13] | Fisher FM, Zak JC, Cunningham GL, Whitford WG (1988). Water and nitrogen effects on growth and allocation patterns of creosotebush in the northern Chihuahuan Desert. Journal of Range Management, 41, 387-391. |
[14] | Fray SD, Elliott ET, Paustian K, Peterson GA (2000). Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biology & Biochemistry, 32, 689-698. |
[15] | Gallardo A, Merino J (1993). Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology, 74, 152-161. |
[16] |
Gallo ME, Sinsabaugh RL, Cabaniss SE (2006). The role of ultraviolet radiation in litter decomposition in arid ecosystems. Applied Soil Ecology, 34, 82-91.
DOI URL |
[17] | Jacobson KM, Jacobson PJ (1998). Rainfall regulates decomposition of buried cellulose in the Namib Desert. Journal of Arid Environments, 38, 571-583. |
[18] | Kemp PR, Reynolds JF, Virginia RA, Whitford WG (2003). Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. Journal of Arid Environments, 53, 21-39. |
[19] | Li YH ( 李永华), Luo TX ( 罗天祥), Lu Q ( 卢琦), Tian XY ( 田晓雅), Wu B ( 吴波), Yang HH ( 杨恒华) (2005). Comparisons of leaf traits among 17 major plant species in Shazhuyu Sand Control Experimental Station of Qinghai Province. Acta Ecologica Sinica (生态学报), 25, 994-999. (in Chinese with English abstract) |
[20] | Lu CY ( 卢昌义), Yin Y ( 尹毅), Lin P ( 林鹏) (1994). Studies on dynamics of litter leaf decomposition in a Rhizophora stylosa mangrove forest in Guangxi, China. Journal of Xiamen University (Natural Science)(厦门大学学报(自然科学版)), 33, 56-61. (in Chinese with English abstract) |
[21] | Mackay WP, Silva S, Loring SJ, Whitford WG (1987). The role of subterranean termites in the decomposition of above-ground creosotebush litter. Sociobiology, 13, 235-239. |
[22] | Martínez-Yrízar A, Núñez S, Búrquez A (2007). Leaf litter decomposition in a southern Sonoran Desert ecosystem, northwestern Mexico: effects of habitat and litter quality. Acta Oecologica, 32, 291-300. |
[23] | McCulley RL, Burke IC, Nelson JA, Lauenroth WK, Knapp AK, Kelly EF (2005). Regional patterns in carbon cycling across the Great Plains of North America. Ecosystems, 8, 106-121. |
[24] |
Meentemeyer V (1978). Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472.
DOI URL |
[25] |
Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
DOI URL |
[26] |
Montaňa C, Ezcurra E, Carrillo A, Delhoume JP (1988). The decomposition of litter in grasslands of northern Mexico: a comparison between arid and non-arid environments. Journal of Arid Environments, 14, 55-60.
DOI URL |
[27] |
Moorhead DL, Reynolds JF (1989). Mechanisms of surface litter mass loss in the northern Chihuahuan Desert: a reinterpretation. Journal of Arid Environments, 16, 157-163.
DOI URL |
[28] |
Moorhead DL, Reynolds JF (1991). A general model of litter decomposition in the northern Chihuahuan Desert. Ecological Modelling, 56, 197-219.
DOI URL |
[29] | Mtambanengwe F, Kirchmann H (1995). Litter from a tropical savanna woodland (miombo): chemical composition and C and N mineralization. Soil Biology & Biochemistry, 27, 1639-1651. |
[30] |
Noy-Meir I (1973). Desert ecosystems: environment and pro- ducers. Annual Review of Ecology Systematic, 4, 25-51.
DOI URL |
[31] | Parker LW, Freckman DW, Steinberger Y, Driggers L, Whitford WG (1984). Effects of simulated rainfall and litter quantities on desert soil biota: soil respiration, microflora and protozoa. Pedobiologia, 27, 185-195. |
[32] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
DOI URL PMID |
[33] |
Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil, 218, 21-30.
DOI URL |
[34] |
Peterjohn WT, Schlesinger WH (1991). Factors controlling denitrification in a Chihuahuan Desert ecosystem. Soil Science Society of America Journal, 55, 1694-1701.
DOI URL |
[35] |
Schaefer D, Steinberger Y, Whitford WG (1985). The failure of nitrogen and lignin control of decomposition in a North American desert. Oecologia, 65, 382-386.
URL PMID |
[36] | Seastedt TR, Parton WJ, Ojima DS (1992). Mass loss and nitrogen dynamics of decaying litter of grasslands: the apparent low nitrogen immobilization potential of root detritus. Canadian Journal of Botany, 70, 384-391. |
[37] |
Steinberger Y, Shmida A, Whitford WG (1990). Decomposi- tion along a rainfall gradient in the Judean desert, Israel. Oecologia, 82, 322-324.
URL PMID |
[38] |
Sternberger Y, Whitford WG (1988). Decomposition process in Negev ecosystems. Oecologia, 75, 61-66.
URL PMID |
[39] | Strojan CL, Randall DC, Turner FB (1987). Relationship of leaf litter decomposition rates to rainfall in the Mojave Desert. Ecology, 68, 741-744. |
[40] | Sun Y ( 孙羽), Zhang T ( 张涛), Tian CY ( 田长彦), Li XL ( 李晓林), Feng G ( 冯固) (2009). Response of grass growth and productivity to enhanced water input in ephemeral desert grassland in Gurbantunggut Desert. Acta Ecologica Sinica (生态学报), 29, 1859-1868. (in Chinese with English abstract) |
[41] |
Taylor BR, Parkinson D, Parsons WFJ (1989). Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70, 97-104.
DOI URL |
[42] | Vossbrinck CR, Coleman DC, Woolley TA (1979). Abiotic and biotic factors in litter decomposition in a semi-arid grassland. Ecology, 60, 265-271. |
[43] |
Wang XQ ( 王雪芹), Jiang J ( 蒋进), Lei JQ ( 雷加强), Zhao CJ ( 赵从举) (2004). Relationship between ephemeral plants distribution and soil moisture on longitudinal dune surface in Gurbantonggut Desert. Chinese Journal of Applied Ecology (应用生态学报), 15, 556-560. (in Chinese with English abstract)
URL PMID |
[44] | Waring RH, Schlesinger WH (1985). Forest Ecosystems: Concepts and Management. Academic Press, Orlando. 181-210. |
[45] | Whitford WG (2002). Ecology of Desert Systems. Academic Press, New York. |
[46] |
Whitford WG, Martínez-Turanzas G, Martínez-Meza E (1995). Persistence of desertified ecosystems: explanations and implications. Environmental Monitoring and Assessment, 37, 319-332.
URL PMID |
[47] |
Whitford WG, Meetemeyer V, Seastedt TR, Cromack JK, Crossley JDA, Santos P, Todd RL, Waide JB (1981). Exceptions to the AET model: deserts and clear-cut forests. Ecology, 62, 275-277.
DOI URL |
[48] | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[49] |
Yahdjian L, Sala OE (2008). Do litter decomposition and nitrogen mineralization show the same trend in the response to dry and wet years in the Patagonian steppe? Journal of Arid Environments, 72, 687-695.
DOI URL |
[50] |
Yahdjian L, Sala OE, Austin AT (2006). Differential controls of water input on litter decomposition and nitrogen dy- namics in the Patagonian steppe. Ecosystems, 9, 128-141.
DOI URL |
[51] | Zhang LY ( 张立运), Chen CD ( 陈昌笃) (2002). On the general characteristics of plant diversity of Gurbantunggut sandy desert. Acta Ecologica Sinica (生态学报), 22, 1923-1932. (in Chinese with English abstract) |
[1] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[4] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[5] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[6] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[7] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[8] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[9] | 殷爽, 王传宽, 金鹰, 周正虎. 东北地区大秃顶子山土壤-微生物-胞外酶C:N:P 化学计量特征沿海拔梯度的变化[J]. 植物生态学报, 2019, 43(11): 999-1009. |
[10] | 郭彩虹, 杨万勤, 吴福忠, 徐振锋, 岳楷, 倪祥银, 袁吉, 杨帆, 谭波. 川西亚高山森林林窗对凋落枝早期分解的影响[J]. 植物生态学报, 2018, 42(1): 28-37. |
[11] | 孙小妹, 陈菁菁, 李金霞, 李良, 韩国君, 陈年来. 高寒草甸植物化学计量比对磷添加的分层响应[J]. 植物生态学报, 2018, 42(1): 78-85. |
[12] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[13] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[14] | 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11): 1189-1207. |
[15] | 马勇刚, 张弛, 陈曦. 利用遥感数据优化物候模型时样本选择的新方法[J]. 植物生态学报, 2015, 39(3): 264-274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19