植物生态学报 ›› 2019, Vol. 43 ›› Issue (11): 999-1009.DOI: 10.17521/cjpe.2019.0141
收稿日期:
2019-06-10
接受日期:
2019-09-16
出版日期:
2019-11-20
发布日期:
2020-03-26
通讯作者:
周正虎
基金资助:
YIN Shuang,WANG Chuan-Kuan,JIN Ying,ZHOU Zheng-Hu()
Received:
2019-06-10
Accepted:
2019-09-16
Online:
2019-11-20
Published:
2020-03-26
Contact:
ZHOU Zheng-Hu
Supported by:
摘要:
海拔变化导致温度、水分、植被等条件的改变会显著影响土壤碳(Csoil)、氮(Nsoil)、磷(Psoil)含量及其化学计量特征, 土壤微生物如何通过调整自身生物量和胞外酶化学计量特征进行适应仍不明确。为了研究海拔梯度变化对土壤微生物生物量和胞外酶活性的影响, 探索土壤-微生物-胞外酶C:N:P化学计量特征间的协变性, 该文以黑龙江省雪乡大秃顶子山800、1 100、1 600和1 700 m分布的典型生态系统(针阔混交林、针叶林、岳桦林和草地)为研究对象, 测定其Csoil、Nsoil、Psoil含量, 微生物生物量C (Cmic)、N (Nmic)、P (Pmic)含量, 以及微生物获取C (β-1, 4-葡萄糖苷酶, BG), N (几丁质酶, NAG), P (酸性磷酸酶, AP)资源的相关胞外酶活性。结果表明: (1)海拔梯度变化对Csoil和Cmic含量没有显著影响; 不同海拔间土壤和微生物生物量N、P含量存在显著差异。(2) BG和NAG活性随着海拔的升高呈现显著降低趋势, 表明海拔升高导致的温度降低抑制了微生物的活性。(3)海拔对土壤C:N、微生物C:N:P以及胞外酶C:N:P均具有显著影响。胞外酶C:N:P随着微生物与土壤间C:N:P化学计量不平衡性(土壤C:N:P与微生物C:N:P的比值)的增加而逐渐降低。微生物可以通过调整自身生物量以及胞外酶C:N:P适应土壤化学计量特征的变异, 该结果支持了微生物的资源分配理论。
殷爽, 王传宽, 金鹰, 周正虎. 东北地区大秃顶子山土壤-微生物-胞外酶C:N:P 化学计量特征沿海拔梯度的变化. 植物生态学报, 2019, 43(11): 999-1009. DOI: 10.17521/cjpe.2019.0141
YIN Shuang, WANG Chuan-Kuan, JIN Ying, ZHOU Zheng-Hu. Changes in soil-microbe-exoenzyme C:N:P stoichiometry along an altitudinal gradient in Mt. Datudingzi, Northeast China. Chinese Journal of Plant Ecology, 2019, 43(11): 999-1009. DOI: 10.17521/cjpe.2019.0141
图1 大秃顶子山不同海拔土壤碳(C)、氮(N)、磷(P)含量及其化学计量比(平均值+标准误差, n = 3)。不同大写字母表示不同海拔间差异显著(p < 0.05)。
Fig. 1 Soil carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometric ratios under different altitudes in Mt. Datudingzi (mean + SE, n = 3). Different uppercase letters represent significant differences at 0.05 level among different altitudes.
图2 大秃顶子山不同海拔土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比(平均值+标准误差, n = 3)。不同大写字母表示不同海拔间差异显著(p < 0.05)。
Fig. 2 Microbial biomass carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometric ratios under different altitudes in Mt. Datudingzi (mean + SE, n = 3). Different uppercase letters represent significant differences at 0.05 level among different altitudes.
图3 大秃顶子山不同海拔胞外酶碳(C)、氮(N)、磷(P)活性及其化学计量比(平均值+标准误差, n = 3)。不同大写字母表示不同海拔间差异显著(p < 0.05)。AP, 酸性磷酸酶; BG, β-1, 4-葡萄糖苷酶; NAG, 几丁质酶。
Fig. 3 Exoenzyme carbon (C), nitrogen (N), and phosphorus (P) activities and their stoichiometric ratios under different altitudes in Mt. Datudingzi (mean + SE, n = 3). Different uppercase letters represent significant differences at 0.05 level among different altitudes. AP, acid phosphomonoesterase; BG, β-1,4-glucosidase; NAG, N-acetyl-β- glucosaminidase.
图5 年平均气温和土壤C储量与海拔之间线性关系斜率的相关性。数据来源于Tashi等(2016)的全球整合分析。空心三角为本研究中的斜率。空心圆为异常值。图中斜率代表海拔每升高1 km土壤C储量(kg·m-2)的变化程度。
Fig. 5 Relationship between mean annual temperature and the slope of linear relationship between soil C storage and altitude. The data is from the global meta-analysis of Tashi et al. (2016). The open triangle is the slope from the current study. The open circle is the outlier. The slope stands for the change in soil C storage (kg·m-2) per km increase in elevation.
[1] | Allison SD, Vitousek PM ( 2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37, 937-944. |
[2] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP ( 2010). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A eds. Soil Enzymology. Springer, Berlin. 229-243. |
[3] | Allison VJ, Condron LM, Peltzer DA, Richardson SJ, Turner BL ( 2007). Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology & Biochemistry, 39, 1770-1781. |
[4] | Brookes PC, Landman A, Pruden G, Jenkinson DS ( 1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842. |
[5] | Buchkowski RW, Schmitz OJ, Bradford MA ( 2015). Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling. Ecology, 96, 1139-1149. |
[6] | Cao R, Wu FZ, Yang WQ, Xu ZF, Tan B, Wang B, Li J, Chang CH ( 2016). Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. Chinese Journal of Applied Ecology, 27, 1257-1264. |
[ 曹瑞, 吴福忠, 杨万勤, 徐振锋, 谭波, 王滨, 李俊, 常晨晖 ( 2016). 海拔对高山峡谷区土壤微生物生物量和酶活性的影响. 应用生态学报, 27, 1257-1264.] | |
[7] | Chapin CT, Bridgham SD, Pastor J, Updegraff K ( 2003). Nitrogen, phosphorus and carbon mineralization in response to nutrient and lime additions in peatlands. Soil Science, 168, 409-420. |
[8] | Chen J, Luo YQ, LI JW, Zhou XH, Cao JJ, Wang RW, Wang YQ, Shelton S, Jin Z, Walker LM, Feng ZZ, Niu SL, Feng WT, Jian SY, Zhou LY ( 2017). Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology, 23, 1328-1337. |
[9] | Cleveland CC, Liptzin D ( 2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
[10] | Davidson ECA, Belk E, Boone RD ( 1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[11] | Ensslin A, Rutten G, Pommer U, Zimmermann R, Hemp A, Fischer M ( 2015). Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere, 6, art45. DOI: 10.1890/ES14-00492.1. |
[12] | Fierer N, Mccain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R ( 2011). Microbes do not follow the elevational diversity patterns of plants and animals. Ecology, 92, 797-804. |
[13] | Garten Jr CT, Hanson PJ ( 2006). Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma, 136, 342-352. |
[14] | Gu XN, He HS, Tao Y, Jin YH, Zhang XY, Xu ZW, Wang YT, Song XX ( 2017). Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain. Acta Ecologica Sinica, 37, 8374-8384. |
[ 谷晓楠, 贺红士, 陶岩, 靳英华, 张心昱, 徐志伟, 王钰婷, 宋祥霞 ( 2017). 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子. 生态学报, 37, 8374-8384.] | |
[15] | Hofmann K, Lamprecht A, Pauli H, Illmer P ( 2016). Distribution of prokaryotic abundance and microbial nutrient cycling across a high-alpine altitudinal gradient in the Austrian Central Alps is affected by vegetation, temperature, and soil nutrients. Microbial Ecology, 72, 704-716. |
[16] | Hu ZD, Liu SR, Shi ZM, Liu XL, He F ( 2012). Variations of soil nitrogen and microbial biomass carbon and nitrogen of Quercus aquifolioides forest at different altitudes in Balangshan, Sichuan. Forest Research, 25, 261-268. |
[ 胡宗达, 刘世荣, 史作民, 刘兴良, 何飞 ( 2012). 川滇高山栎林土壤氮素和微生物量碳氮随海拔变化的特征. 林业科学, 25, 261-268.] | |
[17] | Jenkinson DS, Brookes PC, Powlson DS ( 2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36, 5-7. |
[18] | Kang HZ, Zhuang HL, Wu LL, Liu QL, Shen GR, Berg B, Man RZ, Liu CJ ( 2011). Variation in leaf nitrogen and phosphorus stoichiometry in Picea abies across Europe: An analysis based on local observations. Forest Ecology & Management, 261, 195-202. |
[19] | Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N ( 2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 112, 10967-10972. |
[20] | Li HJ, Liu JW, Yang L, Zheng HF, Liu Y, Yang WQ, Zhang J ( 2016). Effects of simulated climate warming on soil microbial biomass carbon, nitrogen and phosphorus of alpine forest. Chinese Journal of Applied and Environmental Biology, 22, 599-605. |
[ 李洪杰, 刘军伟, 杨林, 郑海峰, 刘洋, 杨万勤, 张健 ( 2016). 海拔梯度模拟气候变暖对高山森林土壤微生物生物量碳氮磷的影响. 应用与环境生物学报, 22, 599-605.] | |
[21] | Li XY, Zhang WY, Liu F, Zhang ZM, He TB, Lin CH ( 2016). The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain. Research of Soil & Water Conservation, 23(3), 19-24. |
[ 李相楹, 张维勇, 刘峰, 张珍明, 何腾兵, 林昌虎 ( 2016). 不同海拔高度下梵净山土壤碳、氮、磷分布特征. 水土保持研究, 23(3), 19-24.] | |
[22] | Li Y, Wu JS, Liu SL, Shen JL, Huang DY, Su YR, Wei WX, Syers JK ( 2012). Is the C:N:P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? Global Biogeochemical Cycles, 26, GB4002. DOI: 10.1029/2012GB004399. |
[23] | Liu BR ( 2010). Changes in soil microbial biomass carbon and nitrogen under typical plant communities along an altitudinal gradient in east side of Helan Mountain. Ecology and Environmental Sciences, 19, 883-888. |
[ 刘秉儒 ( 2010). 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征. 生态环境学报, 19, 883-888.] | |
[24] | Looby CI, Treseder KK ( 2018). Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biology & Biochemistry, 117, 87-96. |
[25] | Margesin R, Jud M, Tscherko D, Schinner F ( 2009). Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology, 67, 208-218. |
[26] | Martens DA, Johanson JB, Frankenberger Jr WT ( 1992). Production and persistence of soil enzymes with repeated addition of organic residues. Soil Science, 153, 53-61. |
[27] | Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A ( 2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 5, 22. DOI: 10.3389/fmicb.2014.00022. |
[28] | Morrissey EM, Berrier DJ, Neubauer SC, Franklin RB ( 2014). Using microbial communities and extracellular enzymes to link soil organic matter characteristics to greenhouse gas production in a tidal freshwater wetland. Biogeochemistry, 117, 473-490. |
[29] | Peng XQ, Wang W ( 2016). Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology & Biochemistry, 98, 74-84. |
[30] | Schimel JP, Bennett J ( 2004). Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591-602. |
[31] | Sinsabaugh RL, Hill BH, Follstad Shah JJ ( 2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798. |
[32] | Štursová M, Baldrian P ( 2011). Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant and Soil, 338, 99-110. |
[33] | Tashi S, Singh B, Keitel C, Adams M ( 2016). Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Global Change Biology, 22, 2255-2268. |
[34] | Wallenius K, Rita H, Mikkonen A, Lappi K, Lindström K, Hartikainen H, Raateland A, Niemi RM ( 2011). Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities. Soil Biology & Biochemistry, 43, 1464-1473. |
[35] | Wang XC ( 2004). Response of Subalpine Timberline in Northeast China to Global Climate Change. PhD dissertation. Northeast Forestry University, Harbin. |
[ 王晓春 ( 2004). 中国东北亚高山林线对全球气候变化的响应. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[36] | Wardle DA ( 1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67, 321-358. |
[37] | Waring BG, Weintraub SR, Sinsabaugh RL ( 2014). Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 117, 101-113. |
[38] | Wei J, Wu G, Wang H, Hao YJ, Shang WY ( 2005). Phosphorus and sulphur bio-cycling in alpine tundra ecosystem of Changbai Mountains. Chinese Journal of Applied Ecology, 16, 1230-1234. |
[ 魏晶, 吴钢, 王欢, 郝莹婕, 尚文艳 ( 2005). 长白山高山冻原生态系统磷硫生物循环的研究. 应用生态学报, 16, 1230-1234.] | |
[39] | Xu QF, Jiang PK, Shen Q ( 2005). Comparison of organic carbon pool of soil in bush and broad-leaved forests. Journal of Beijing Forestry University, 27(2), 18-22. |
[ 徐秋芳, 姜培坤, 沈泉 ( 2005). 灌木林与阔叶林土壤有机碳库的比较研究. 北京林业大学学报, 27(2), 18-22.] | |
[40] | Xu XF, Thornton PE, Post WM ( 2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749. |
[41] | Xu ZW, Yu GR, Zhang XY, Ge JP, He NP, Wang QF, Wang D ( 2015). The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Applied Soil Ecology, 86, 19-29. |
[42] | Xu ZW, Yu GR, Zhang XY, He NP, Wang QF, Wang SZ, Wang RL, Zhao N, Jia YL, Wang CY ( 2017). Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in Eastern China (NSTEC). Soil Biology & Biochemistry, 104, 152-163. |
[43] | Zhang P, Zhang GQ, Zhao YP, Peng SZ, Chen YM, Cao Y ( 2018). Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the Loess hilly-gully region of China. Acta Ecologica Sinica, 38, 5087-5098. |
[ 张萍, 章广琦, 赵一娉, 彭守璋, 陈云明, 曹扬 ( 2018). 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征. 生态学报, 38, 5087-5098.] | |
[44] | Zhao PP, Zhou JC, Lin KM, Lin WS, Yuan P, Zeng XM, Su Y, Xu JG, Chen YM, Yang YS ( 2019a). Effects of different altitudes on soil microbial biomass and enzyme activities in Pinus taiwanensis forests on Daiyun Mountain, Fujian Province. Acta Ecologica Sinica, 39, 2676-2686. |
[ 赵盼盼, 周家聪, 林开淼, 林伟盛, 袁萍, 曾晓敏, 苏莹, 徐建国, 陈岳民, 杨玉盛 ( 2019a). 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响. 生态学报, 39, 2676-2686.] | |
[45] | Zhao PP, Zhou JC, Lin KM, Zhang QF, Yuan P, Zeng XM, Su Y, Xu JG, Chen YM, Yang YS ( 2019b). Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone. Acta Ecologica Sinica, 39, 2215-2225. |
[ 赵盼盼, 周嘉聪, 林开淼, 张秋芳, 袁萍, 曾晓敏, 苏莹, 徐建国, 陈岳民, 杨玉盛 ( 2019b). 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响. 生态学报, 39, 2215-2225.] | |
[46] | Zheng MH, Zhou ZH, Luo YQ, Zhao P, Mo JM ( 2019). Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Global Change Biology, 25, 3018-3030. |
[47] | Zhou ZH, Wang CK ( 2017). Soil-microbe-mineralization carbon and nitrogen stoichiometry under different land-uses in the Maoershan region. Acta Ecologica Sinica, 37, 2428-2436. |
[ 周正虎, 王传宽 ( 2017). 帽儿山地区不同土地利用方式下土壤-微生物-矿化碳氮化学计量特征. 生态学报, 37, 2428-2436.] | |
[48] | Zhou ZH, Wang CK, Jin Y ( 2017). Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils. Biology and Fertility of Soils, 53, 397-406. |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[6] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[9] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[10] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[11] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[12] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[13] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[14] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[15] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19