植物生态学报 ›› 2014, Vol. 38 ›› Issue (8): 868-877.DOI: 10.3724/SP.J.1258.2014.00081
熊慧1, 马承恩2, 李乐3, 曾辉1,2, 郭大立3,*()
收稿日期:
2014-03-11
接受日期:
2014-05-25
出版日期:
2014-03-11
发布日期:
2014-08-18
通讯作者:
郭大立
作者简介:
* E-mail:guodl@igsnrr.ac.cn基金资助:
XIONG Hui1, MA Cheng-En2, LI Le3, ZENG Hui1,2, GUO Da-Li3,*()
Received:
2014-03-11
Accepted:
2014-05-25
Online:
2014-03-11
Published:
2014-08-18
Contact:
GUO Da-Li
摘要:
气孔是植物与大气环境进行气体交换的重要通道, 在调控植物碳水平衡方面发挥着重要作用。为探讨生境和植物类型对气孔形态特征的影响以及气孔对光强变化的响应格局在不同植物间和不同生境条件下的变异, 选取开阔生境和林下生境的5种蕨类植物和4种被子植物, 测定了它们的气孔形态特征和气孔导度对光强变化的响应。此外, 还收集了8篇文献中开阔和林下生境的45种蕨类植物和70种被子植物的气孔密度和气孔长度数据, 以增大样本量从而更好地探讨不同生境条件下蕨类和被子植物气孔密度及长度的变异格局, 并通过分析生境和植物类型对气孔形态特征的影响来推测生境和植物类型对气孔响应行为的可能影响。实验结果表明, 与林下植物相比, 开阔环境下的植物气孔密度更大, 气孔长度更小, 气孔对光强降低的响应更敏感; 但植物类型对气孔形态特征的影响以及对气孔响应光强的敏感程度的影响均不显著。对文献数据的分析表明, 生境和植物类型对气孔形态特征均有显著影响。考虑到气孔响应快慢与气孔形态特征密切相关, 与蕨类植物相比, 被子植物小而密的气孔可能为其更快地响应环境变化提供了基础。研究表明生境和植物类型对气孔响应行为均有显著影响。
熊慧, 马承恩, 李乐, 曾辉, 郭大立. 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应. 植物生态学报, 2014, 38(8): 868-877. DOI: 10.3724/SP.J.1258.2014.00081
XIONG Hui, MA Cheng-En, LI Le, ZENG Hui, GUO Da-Li. Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats. Chinese Journal of Plant Ecology, 2014, 38(8): 868-877. DOI: 10.3724/SP.J.1258.2014.00081
图1 开阔和林下生境不同土壤深度的土壤含水量(平均值±标准误差, n = 6)。***, p < 0.001。
Fig. 1 Soil water content at different soil depth in open and understory habitats (means ± SE, n = 6). ***, p < 0.001.
物种 Species | 植物类型 Plant type | 生境 Habitat | 缩写 Abbreviations | 高度 Height (m) |
---|---|---|---|---|
芒萁 Dicranopteris pedata | 蕨类植物 Fern | 开阔 Open | Dp | 0.78 ± 0.09 |
菜蕨 Callipteris esculenta | 蕨类植物 Fern | 开阔 Open | Ce | 1.13 ± 0.09 |
长叶铁角蕨 Asplenium prolongatum | 蕨类植物 Fern | 林下 Understory | Ap | 0.34 ± 0.01 |
福建观音座莲 Angiopteris fokiensis | 蕨类植物 Fern | 林下 Understory | Af | 1.85 ± 0.09 |
狗脊 Woodwardia japonica | 蕨类植物 Fern | 林下 Understory | Wj | 0.94 ± 0.09 |
少花柏拉木 Blastus pauciflorus | 被子植物 Angiosperm | 开阔 Open | Bp | 1.02 ± 0.09 |
三叶地锦 Parthenocissus semicordata | 被子植物 Angiosperm | 林下 Understory | Ps | 藤本 Alina |
对叶楼梯草 Elatostema sinense | 被子植物 Angiosperm | 林下 Understory | Es | 0.55 ± 0.03 |
心叶毛蕊茶 Camellia cordifolia | 被子植物 Angiosperm | 林下 Understory | Cc | 3.43 ± 0.54 |
表1 9种植物的植物类型、生境、缩写和植株高度(平均值±标准误差)
Table 1 Plant type, habitat, species abbreviations and plant height of the nine species (mean ± SE)
物种 Species | 植物类型 Plant type | 生境 Habitat | 缩写 Abbreviations | 高度 Height (m) |
---|---|---|---|---|
芒萁 Dicranopteris pedata | 蕨类植物 Fern | 开阔 Open | Dp | 0.78 ± 0.09 |
菜蕨 Callipteris esculenta | 蕨类植物 Fern | 开阔 Open | Ce | 1.13 ± 0.09 |
长叶铁角蕨 Asplenium prolongatum | 蕨类植物 Fern | 林下 Understory | Ap | 0.34 ± 0.01 |
福建观音座莲 Angiopteris fokiensis | 蕨类植物 Fern | 林下 Understory | Af | 1.85 ± 0.09 |
狗脊 Woodwardia japonica | 蕨类植物 Fern | 林下 Understory | Wj | 0.94 ± 0.09 |
少花柏拉木 Blastus pauciflorus | 被子植物 Angiosperm | 开阔 Open | Bp | 1.02 ± 0.09 |
三叶地锦 Parthenocissus semicordata | 被子植物 Angiosperm | 林下 Understory | Ps | 藤本 Alina |
对叶楼梯草 Elatostema sinense | 被子植物 Angiosperm | 林下 Understory | Es | 0.55 ± 0.03 |
心叶毛蕊茶 Camellia cordifolia | 被子植物 Angiosperm | 林下 Understory | Cc | 3.43 ± 0.54 |
图2 开阔和林下生境的4种被子植物和5种蕨类植物的气孔密度和气孔长度(平均值±标准误差)。物种缩写同表1; A, F分别代表被子植物(n = 4)和蕨类植物(n = 5); U, O分别代表林下生境(n = 6)和开阔生境(n = 3); **, p < 0.01; *, p < 0.05。
Fig. 2 Stomatal density (SD) and stomatal length (SL) for 4 angiosperms and 5 ferns in open and understory habitats (mean ± SE). Abbreviations of species name see Table 1; A and F represent angiosperms (n = 4) and ferns (n = 5), respectively; U and O represent plants in understory (n = 6) and open habitats (n = 3), respectively; **, p < 0.01; *, p < 0.05.
图3 开阔和林下生境的蕨类和被子植物的气孔密度和气孔长度的关系。数据包括本研究实测数据以及文献中的数据。
Fig. 3 Relationship between stomatal density and stomatal length in ferns and angiosperms in open and understory habitats. Data include measurements in this study and from literature.
图4 生境和类型对植物气孔密度和气孔长度的影响(平均值±标准误差)。数据包括本研究实测数据以及文献中的数据; ***, p < 0.001。
Fig. 4 Effects of habitat and plant type on stomatal density and stomatal length (mean ± SE). Data include measurements in this study and from literature; ***, p < 0.001.
图5 开阔生境被子植物(OA)、开阔生境蕨类植物(OF)、林下生境被子植物(UA)和林下生境蕨类植物(UF)的气孔密度和气孔长度比较(平均值±标准误差)。不同的字母表示差异显著(p < 0.05); 数据包括本研究实测数据以及文献中的 数据。
Fig. 5 Comparison of stomatal density and stomatal length among four categories of plants: angiosperm in open habitat (OA), fern in open habitat (OF), angiosperm in understory (UA), and fern in understory (UF) (mean ± SE). Different letters indicate significant difference (p < 0.05); Data include measurements in this study and from literature.
变异来源 Source of variable | 植物生境 Habitat | 植物类型 Plant type | 类型×生境 Habitat × Plant type |
---|---|---|---|
光合速率最大值(A, μmol·m-2·s-1) | 0.017 | 0.165 | 0.172 |
气孔导度最大值(Gs, mol·m-2·s-1) | 0.024 | 0.169 | 0.126 |
气孔关闭绝对速率(Gclosure, Gs·s-1) | 0.000 | 0.116 | 0.260 |
气孔关闭相对速率(Pclosure, %Gs·s-1) | 0.032 | 0.241 | 0.934 |
气孔张开绝对速率(Gopen, Gs·s-1) | 0.493 | 0.814 | 0.751 |
气孔张开相对速率(Popen, %Gs·s-1) | 0.601 | 0.179 | 0.985 |
表2 生境和植物类型对9种植物气孔响应光强变化过程中的各个指标的影响。
Table 2 Effects of habitat and plant type on each index in response to changing light intensity of nine species.
变异来源 Source of variable | 植物生境 Habitat | 植物类型 Plant type | 类型×生境 Habitat × Plant type |
---|---|---|---|
光合速率最大值(A, μmol·m-2·s-1) | 0.017 | 0.165 | 0.172 |
气孔导度最大值(Gs, mol·m-2·s-1) | 0.024 | 0.169 | 0.126 |
气孔关闭绝对速率(Gclosure, Gs·s-1) | 0.000 | 0.116 | 0.260 |
气孔关闭相对速率(Pclosure, %Gs·s-1) | 0.032 | 0.241 | 0.934 |
气孔张开绝对速率(Gopen, Gs·s-1) | 0.493 | 0.814 | 0.751 |
气孔张开相对速率(Popen, %Gs·s-1) | 0.601 | 0.179 | 0.985 |
图6 开阔和林下生境的两种蕨类植物(A-D)和两种被子植物(E-H)的气孔导度和光合速率随光强变化的响应曲线。虚线表示光照强度; A, E的黑色箭头可以看出光强降低时(1000到100 μmol·m-2·s-1)开阔生境的蕨类和被子植物气孔导度迅速降低, 气孔快速响应; C, G的黑色箭头可以看出光强降低时(1000到100 μmol·m-2·s-1)林下生境的蕨类和被子植物气孔导度变化很小, 气孔响应缓慢。
Fig. 6 Responses of stomatal conductance (Gs) and CO2 assimilation rate (A) in two ferns (A-D) and two angiosperms (E-H) in open and understory habitats for 30 minutes after each of four transitions in light intensity (PPFD) (dashed line). The two species in open habitats showed rapid stomatal closure following transition from high to low light (1000 to 100 μmol·m-2·s-1) (A and E, black arrows); whereas the two species in understory showed slow stomatal closure following transition from high to low light (1000 to 100 μmol·m-2·s-1) (C and G, black arrows).
性状指标 Traits | 气孔密度 SD | 气孔长度 SL | 光合速率 最大值 A | 气孔导度 最大值 Gs | 气孔关闭绝对速率 Gclosure | 气孔关闭相对速率 Pclosure | 气孔张开绝对速率 Gopen |
---|---|---|---|---|---|---|---|
气孔长度 SL | -0.588+ | ||||||
光合速率最大值 A | 0.773* | -0.363 | |||||
气孔导度最大值 Gs | 0.755* | -0.371 | 0.984** | ||||
气孔关闭绝对速率 Gclosure | 0.911** | -0.555 | 0.901** | 0.906** | |||
气孔关闭相对速率 Pclosure | 0.661+ | -0.639+ | 0.325 | 0.306 | 0.658+ | ||
气孔张开绝对速率 Gopen | 0.090 | -0.135 | 0.648 | 0.673* | 0.440 | -0.063 | |
气孔张开相对速率 Popen | -0.448 | -0.102 | -0.166 | -0.217 | -0.291 | -0.122 | 0.414 |
Table 3 Correlations between the eight morphological and physiological traits of nine species
性状指标 Traits | 气孔密度 SD | 气孔长度 SL | 光合速率 最大值 A | 气孔导度 最大值 Gs | 气孔关闭绝对速率 Gclosure | 气孔关闭相对速率 Pclosure | 气孔张开绝对速率 Gopen |
---|---|---|---|---|---|---|---|
气孔长度 SL | -0.588+ | ||||||
光合速率最大值 A | 0.773* | -0.363 | |||||
气孔导度最大值 Gs | 0.755* | -0.371 | 0.984** | ||||
气孔关闭绝对速率 Gclosure | 0.911** | -0.555 | 0.901** | 0.906** | |||
气孔关闭相对速率 Pclosure | 0.661+ | -0.639+ | 0.325 | 0.306 | 0.658+ | ||
气孔张开绝对速率 Gopen | 0.090 | -0.135 | 0.648 | 0.673* | 0.440 | -0.063 | |
气孔张开相对速率 Popen | -0.448 | -0.102 | -0.166 | -0.217 | -0.291 | -0.122 | 0.414 |
[1] |
Abrams MD, Kubiske ME (1990). Leaf structural characteristics of 31 hardwood and conifer tree species in central wisconsin: influence of light regime and shade-tolerance rank. Forest Ecology and Management, 31, 245-253.
DOI URL |
[2] |
Abrams MD, Mostoller SA (1995). Gas exchange, leaf structure and nitrogen in contrasting successional tree species growing in open and understory sites during a drought. Tree Physiology, 15, 361-370.
DOI URL |
[3] |
Allen MT, Pearcy RW (2000). Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. Oecologia, 122, 470-478.
DOI URL |
[4] |
Arve LE, Terfa MT, Gislerød HR, Olsen JE, Torre S (2013). High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant, Cell & Environment, 36, 382-392.
URL PMID |
[5] | Atala C, Saldana A, Navarrete E (2012). Stomatal frequency and gas exchange differs in two Blechnum species (Pteridophyta, Blechnaceae) with contrasting ecological breadth. Gayana Botánica, 69, 161-166. |
[6] | Bakker J (1991). Effects of humidity on stomatal density and its relation to leaf conductance. Scientia Horticulturae, 48, 205-212. |
[7] |
Beerling D, Kelly C (1997). Stomatal density responses of temperate woodland plants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data. American Journal of Botany, 84, 1572-1572.
URL PMID |
[8] | Beerling DJ, Chaloner WG (1993). The impact of atmospheric CO2 and temperature changes on stomatal density: observation from Quercus robur lammas leaves. Annals of Botany, 71, 231-235. |
[9] | Brodribb TJ, Holbrook NM (2004). Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist, 162, 663-670. |
[10] |
Brodribb TJ, McAdam SA, Jordan GJ, Feild TS (2009). Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytologist, 183, 839-847.
URL PMID |
[11] |
Brodribb TJ, McAdam SAM (2011). Passive origins of stomatal control in vascular plants. Science, 331, 582-585.
DOI URL PMID |
[12] |
Cai ZQ, Qi X, Cao KF (2004). Response of stomatal characteristic and its plasticity to different light intensities in leaves of seven tropical woody seedlings. Chinese Journal of Applied Ecology, 15, 201-204. (in Chinese with English abstract)
URL PMID |
[ 蔡志全, 齐欣, 曹坤芳 (2004). 七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应. 应用生态学报, 15, 201-204.]
PMID |
|
[13] |
Casson SA, Hetherington AM (2010). Environmental regulation of stomatal development. Current Opinion in Plant Biology, 13, 90-95.
DOI URL PMID |
[14] | Chazdon RL (1988). Sunflecks and their importance to forest understorey plants. Advances in Ecological Research, 18, 1-63. |
[15] | Clemente HS, Marler TE (1996). Drought stress influences gas-exchange responses of papaya leaves to rapid changes in irradiance. Journal of the American Society for Horticultural Science, 121, 292-295. |
[16] | Czerniak CF (2013). Causes and Consequences of Variation in Fern Leaf Form and Physiology. PhD dissertation, University of California, Los Angeles. 126-168. |
[17] |
Doi M, Wada M, Shimazaki K (2006). The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant & Cell Physiology, 47, 748-755.
DOI URL PMID |
[18] |
Drake PL, Froend RH, Franks PJ (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64, 495-505.
DOI URL PMID |
[19] |
El-Sharkawy MA, Cock JH, Hernandez ADP (1985). Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynthesis Research, 7, 137-149.
URL PMID |
[20] |
Fanourakis D, Heuvelink E, Carvalho SMP (2013). A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. Journal of Plant Physiology, 170, 890-898.
URL PMID |
[21] |
Franks PJ, Beerling DJ (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 106, 10343-10347.
URL PMID |
[22] |
Gago J, Coopman RE, Cabrera HM, Hermida C, Molins A, Conesa MÀ, Galmés J, Ribas-Carbó M, Flexas J (2013). Photosynthesis limitations in three fern species. Physiologia Plantarum, 149, 599-611.
URL PMID |
[23] |
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901-908.
URL PMID |
[24] | Hollinger DY (1987). Photosynthesis and stomatal conductance patterns of two fern species from different forest understoreys. Journal of Ecology, 75, 925-935. |
[25] | Kirschbaum MUF, Gross LJ, Pearcy RW (1988). Observed and modelled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant, Cell & Environment, 11, 111-121. |
[26] | Kloeppel BD, Abrams MD, Kubiske ME (1993). Seasonal ecophysiology and leaf morphology of four successional Pennsylvania barrens species in open versus understory environments. Canadian Journal of Forest Research, 23, 181-189. |
[27] | Li CH, Tao MC, Ji QS (2001). The climate of evergreen broad-leaved forest area in the Jiulian mountain of Jiangxi Province. Resources Science, 23(suppl.), 3-14. (in Chinese with English abstract) |
[ 李昌华, 唐茂聪, 吉庆森 (2001). 江西九连山常绿阔叶林区气候资源. 资源科学, 23(增刊), 3-14.] | |
[28] | Li QK, Ma KP (2002). Advances in plant succession ecophysiology. Acta Phytoecologia Sinica, 26(suppl.), 9-19. (in Chinese with English abstract) |
[ 李庆康, 马克平 (2002). 植物群落演替过程中植物生理生态学特性及其主要环境因子的变化. 植物生态学报, 26(增刊), 9-19.] | |
[29] | Ludlow CJ, Wolf FT (1975). Photosynthesis and respiration rates of ferns. American Fern Journal, 65, 43-48. |
[30] | Maherali H, Reid C, Polley H, Johnson H, Jackson R (2002). Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant, Cell & Environment, 25, 557-566. |
[31] |
McAdam SA, Brodribb TJ (2012a). Fern and lycophyte guard cells do not respond to endogenous abscisic acid. The Plant Cell, 24, 1510-1521.
URL PMID |
[32] |
McAdam SA, Brodribb TJ (2012b). Stomatal innovation and the rise of seed plants. Ecology Letters, 15, 1-8.
URL PMID |
[33] |
Nejad AR, Harbinson J, van Meeteren U (2006). Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity. Journal of Experimental Botany, 57, 3669-3678.
DOI URL |
[34] |
Nejad AR, van Meeteren U (2005). Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity. Physiologia Plantarum, 125, 324-332.
DOI URL |
[35] | Nejad AR, van Meeteren U (2007). The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. Journal of Experimental Botany, 58, 627-636. |
[36] | Nobel PS, Calkin HW, Gibson AC (1984). Influences of PAR, temperature and water vapor concentration on gas exchange by ferns. Physiologia Plantarum, 62, 527-534. |
[37] | Page CN (2002). Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology, 119, 1-33. |
[38] | Pearcy RW (1987). Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Functional Ecology, 1, 169-178. |
[39] | Poole I, Weyers J, Lawson T, Raven J (1996). Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant, Cell & Environment, 19, 705-712. |
[40] | Riaño K, Briones O (2013). Leaf physiological response to light environment of three tree fern species in a mexican cloud forest. Journal of Tropical Ecology, 29, 217-228. |
[41] |
Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004). Ferns diversified in the shadow of angiosperms. Nature, 428, 553-557.
URL PMID |
[42] | Takahashi K, Mikami Y (2006). Effects of canopy cover and seasonal reduction in rainfall on leaf phenology and leaf traits of the fern Oleandra pistillaris in a tropical montane forest, indonesia. Journal of Tropical Ecology, 22, 599-604. |
[43] | Tinoco-Ojanguren C, Pearcy RW (1993). Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. I. VPD effects on the transient stomatal response to lightflecks. Oecologia, 94, 388-394. |
[44] | Torre S, Fjeld T, Gislerød HR, Moe R (2003). Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. Journal of the American Society for Horticultural Science, 128, 598-602. |
[45] |
Valladares F, Allen MT, Pearcy RW (1997). Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occuring along a light gradient. Oecologia, 111, 505-514.
URL PMID |
[46] | Woodward FI (1987). Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327, 617-618. |
[47] | Zhan JC, Huang WD, Wang XQ, Wang LJ (2005). Leaf transpiration and stomatal structure of young grape plants grown in a low light environment. Acta Phytoecologia Sinica, 29, 26-31. (in Chinese with English abstract) |
[ 战吉宬, 黄卫东, 王秀芹, 王利军 (2005). 弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化. 植物生态学报, 29, 26-31.] | |
[48] | Zhang SB, Sun M, Cao KF, Hu H, Zhang JL (2014). Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity. PLoS ONE, doi: 10.1371/journal.pone.0084682. |
[49] | Zhao J, Wan SZ, Li ZA, Shao YH, Xu GL, Liu ZF, Zhou LX, Fu SL (2012). Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region. Soil Biology and Biochemistry, 49, 78-87. |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[3] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[4] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[5] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[6] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[7] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[8] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[9] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[10] | 孟庆静, 樊卫国. 刺梨的适钙类型及对高钙生境的适应性[J]. 植物生态学报, 2022, 46(12): 1562-1572. |
[11] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[12] | 钟雨辰, 王斌, 方中平, 徐小忠, 于明坚. 片段化景观中壳斗科植物种子捕食和扩散模式[J]. 植物生态学报, 2021, 45(2): 154-162. |
[13] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[14] | 韩大勇, 张维, 努尔买买提•依力亚斯, 杨允菲. 植物种群更新的补充限制[J]. 植物生态学报, 2021, 45(1): 1-12. |
[15] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19