植物生态学报 ›› 2015, Vol. 39 ›› Issue (12): 1146-1155.DOI: 10.17521/cjpe.2015.0111
所属专题: 生态化学计量
出版日期:
2015-12-01
发布日期:
2015-12-31
通讯作者:
陈云明
作者简介:
# 共同第一作者
基金资助:
CUI Gao-Yang1, CAO Yang2,3, CHEN Yun-Ming2,3,*()
Online:
2015-12-01
Published:
2015-12-31
Contact:
Yun-Ming CHEN
About author:
# Co-first authors
摘要:
研究森林植被、枯落物和土壤的氮(N)磷(P)化学计量关系对于理解生态系统各组分的相互作用和养分循环具有重要意义。该研究对陕西省不同类型森林生态系统植被、枯落物和土壤的N和P含量及其化学计量关系进行了研究分析。结果表明: 1)森林生态系统各组分的N、P化学计量特征存在显著差异(p < 0.05), N、P含量均以林下灌草层植物和枯落物层较高, 乔木层植物和土壤层较低; N:P值则稍有不同, 以枯落物层最高, 土壤层最低, 其他各层差异不显著; 各组分N、P含量和N:P值分别为0.72-11.99 mg·g-1、0.47-1.07 mg·g-1和1.86-14.84。0-1 m土层内N含量、N:P值均随土层加深而降低(p < 0.05), P含量则不随土层发生明显变化。2)各组分N、P含量和N:P值多表现为阔叶林高于针叶林, 但其差异不显著。3)生态系统同一组分内, N、P含量间极显著正相关, N、P含量与N:P值分别呈极显著正相关、负相关关系, 但是土壤层内N、P含量无显著相关关系。各组分间, 枯落物层与乔木层、草本层和土壤层的N、P含量和N:P值也均极显著正相关, 而枯落物层与灌木层植物无显著相关关系。4)生态系统各组分N、P含量和N:P值随空间变化表现不尽一致, 总体上呈稳态。该文通过对N、P化学计量特征的研究, 揭示了森林生态系统植被、枯落物和土壤组分间所存在的养分循环联系, 这些联系中也表现出分异特征, 而分异可能由各自所执行的不同生态功能所致。
崔高阳, 曹扬, 陈云明. 陕西省森林各生态系统组分氮磷化学计量特征. 植物生态学报, 2015, 39(12): 1146-1155. DOI: 10.17521/cjpe.2015.0111
CUI Gao-Yang,CAO Yang,CHEN Yun-Ming. Characteristics of nitrogen and phosphorus stoichiometry across components of forest ecosystem in Shaanxi Province. Chinese Journal of Plant Ecology, 2015, 39(12): 1146-1155. DOI: 10.17521/cjpe.2015.0111
图2 陕西省森林生态系统各组分(A、B、C)及土壤各层(D、E、F)氮磷含量及氮磷比。T、B、H、L和S分别代表乔木、灌木、草本、枯落物和土壤; 图2F中X轴上的1、2、3、4、5分别代表0-10、10-20、20-30、30-50和50-100 cm土层。不同小写字母代表差异性显著(p < 0.05)。误差线表示标准误差。
Fig. 2 N and P concentrations and their ratio of each component in forest ecosystem (A, B, C) and in each layer of soil (D, E, F) in Shaanxi Province. T, B, H, L and S represent tree, bush, herb, litter and soil, respectively. 1, 2, 3, 4 and 5 at the X-axis of Fig. 2F represent 0-10, 10-20, 20-30, 30-50 and 50-100 cm soil layers, respectively. Different lowercase letters indicate significant differences (p < 0.05). The error bars express standard error of the mean.
生态系统组分 Ecosystem component | N | P | N:P | |||||
---|---|---|---|---|---|---|---|---|
阔叶林 Broadleaf forest | 针叶林 Coniferous forest | 阔叶林 Broadleaf forest | 针叶林 Coniferous forest | 阔叶林 Broadleaf forest | 针叶林 Coniferous forest | |||
乔木 Tree | 4.91 ± 0.28A | 3.51 ± 0.19B | 0.52 ± 0.02A | 0.38 ± 0.02B | 10.21 ± 0.46A | 9.41 ± 0.46A | ||
灌木 Bush | 10.09 ± 0.53A | 7.33 ± 0.79B | 0.92 ± 0.04A | 0.80 ± 0.08A | 11.73 ± 0.50A | 10.24 ± 1.18A | ||
草本 Herb | 10.83 ± 0.40A | 10.25 ± 0.47A | 1.12 ± 0.06A | 0.86 ± 0.06B | 10.75 ± 0.36A | 13.40 ± 1.03B | ||
枯落物 Litter | 12.68 ± 0.32A | 9.47 ± 0.35B | 0.89 ± 0.02A | 0.72 ± 0.05B | 14.85 ± 0.40A | 14.78 ± 1.03A | ||
土壤 Soil | 0.73 ± 0.03A | 0.66 ± 0.06A | 0.53 ± 0.05A | 0.41 ± 0.03A | 1.84 ± 0.11A | 1.92 ± 0.20A |
表1 陕西省针叶林、阔叶林生态系统各组分氮磷含量及氮磷比(平均值±标准误差)
Table 1 N and P content and their ratio of ecosystem components within broadleaf forest and coniferous forest in Shaanxi Province (mean ± SE)
生态系统组分 Ecosystem component | N | P | N:P | |||||
---|---|---|---|---|---|---|---|---|
阔叶林 Broadleaf forest | 针叶林 Coniferous forest | 阔叶林 Broadleaf forest | 针叶林 Coniferous forest | 阔叶林 Broadleaf forest | 针叶林 Coniferous forest | |||
乔木 Tree | 4.91 ± 0.28A | 3.51 ± 0.19B | 0.52 ± 0.02A | 0.38 ± 0.02B | 10.21 ± 0.46A | 9.41 ± 0.46A | ||
灌木 Bush | 10.09 ± 0.53A | 7.33 ± 0.79B | 0.92 ± 0.04A | 0.80 ± 0.08A | 11.73 ± 0.50A | 10.24 ± 1.18A | ||
草本 Herb | 10.83 ± 0.40A | 10.25 ± 0.47A | 1.12 ± 0.06A | 0.86 ± 0.06B | 10.75 ± 0.36A | 13.40 ± 1.03B | ||
枯落物 Litter | 12.68 ± 0.32A | 9.47 ± 0.35B | 0.89 ± 0.02A | 0.72 ± 0.05B | 14.85 ± 0.40A | 14.78 ± 1.03A | ||
土壤 Soil | 0.73 ± 0.03A | 0.66 ± 0.06A | 0.53 ± 0.05A | 0.41 ± 0.03A | 1.84 ± 0.11A | 1.92 ± 0.20A |
图3 陕西省3种主要森林生态系统乔木(A)、灌木(B)、草本(C)、枯落物(D)、土壤(E)各组分氮磷化学计量特征。刺槐林、油松林和栓皮栎林的重复样本数分别为12、13和25。不同小写字母代表差异性显著(p < 0.05)。误差线表示标准误差。
Fig. 3 N and P concentrations and their ratio of tree (A), bush (B), herb (C), litter (D), soil (E) in three forest ecosystems in Shanxi Province. The number of sampling plot for Robinia pseudoacacia forest, Pinus tabuliformis forest and Quercus variabilis forest was 12, 13, and 25, respectively. Different lowercase letters indicate significant differences among forest types (p < 0.05). The error bars express standard error of the mean.
枯落物层 Litter layer | |||
---|---|---|---|
N | P | N:P | |
乔木层 Tree layer | 0.29** | 0.36*** | 0.28** |
灌木层 Bush layer | 0.08 | -0.10 | 0.01 |
草本层 Herb layer | 0.45*** | 0.45*** | 0.34*** |
土壤层 Soil layer | 0.28** | 0.32*** | 0.30** |
表2 陕西省森林生态系统枯落物层与其他各组分氮磷化学计量相关性
Table 2 Correlation relationship of N and P stoichiometry between litter and tree, bush, herb and soil components in forest ecosystem in Shaanxi Province
枯落物层 Litter layer | |||
---|---|---|---|
N | P | N:P | |
乔木层 Tree layer | 0.29** | 0.36*** | 0.28** |
灌木层 Bush layer | 0.08 | -0.10 | 0.01 |
草本层 Herb layer | 0.45*** | 0.45*** | 0.34*** |
土壤层 Soil layer | 0.28** | 0.32*** | 0.30** |
n | N:P | |||||
---|---|---|---|---|---|---|
乔木层 Tree layer | 灌木层1) Bush layer | 草本层 Herb layer | 枯落物层Litter layer | 土壤层 Soil layer | ||
N | 121 | 0.58*** | 0.57*** | 0.17 | 0.32*** | 0.55*** |
P | 121 | -0.40*** | -0.39*** | -0.58*** | -0.70*** | -0.66*** |
r | 121 | 0.42*** | 0.42*** | 0.54*** | 0.36*** | 0.10 |
表3 陕西省森林生态系统各组分内氮磷化学计量相关性
Table 3 Correlation relationships of N and P stoichiometry within tree, bush, herb, litter and soil components in forest ecosystem in Shaanxi Pro- vince
n | N:P | |||||
---|---|---|---|---|---|---|
乔木层 Tree layer | 灌木层1) Bush layer | 草本层 Herb layer | 枯落物层Litter layer | 土壤层 Soil layer | ||
N | 121 | 0.58*** | 0.57*** | 0.17 | 0.32*** | 0.55*** |
P | 121 | -0.40*** | -0.39*** | -0.58*** | -0.70*** | -0.66*** |
r | 121 | 0.42*** | 0.42*** | 0.54*** | 0.36*** | 0.10 |
生态系统组分 Ecosystem component | n | N | P | N:P | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
斜率 Slope | R2 | p | 斜率 Slope | R2 | p | 斜率 Slope | R2 | p | |||||
经度 | 乔木层 Tree layer | 121 | 0.02 | 0.001 | 0.80 | -0.03 | 0.001 | 0.72 | -0.04 | 0.001 | 0.70 | ||
Longitude | 灌木层 Bush layer* | 106 | 0.04 | 0.001 | 0.71 | 0.03 | 0.001 | 0.76 | 0.02 | <0.001 | 0.88 | ||
草本层 Herb layer | 121 | -0.12 | 0.03 | 0.05 | -0.26 | 0.07 | 0.004 | 0.16 | 0.03 | 0.07 | |||
枯落物层 Litter layer | 121 | -0.08 | 0.006 | 0.42 | -0.18 | 0.03 | 0.05 | 0.10 | 0.01 | 0.25 | |||
土壤层 Soil layer | 121 | -0.06 | 0.004 | 0.51 | 0.02 | 0.001 | 0.80 | -0.02 | 0.001 | 0.80 | |||
纬度 | 乔木层 Tree layer | 121 | 0.33 | 0.11 | < 0.001 | 0.02 | < 0.001 | 0.86 | 0.22 | 0.05 | 0.01 | ||
Latitude | 灌木层 Bush layer* | 106 | -0.10 | 0.01 | 0.30 | -0.22 | 0.05 | 0.02 | 0.02 | 0.001 | 0.80 | ||
草本层 Herb layer | 121 | -0.07 | 0.004 | 0.47 | -0.15 | 0.02 | 0.11 | 0.14 | 0.02 | 0.12 | |||
枯落物层 Litter layer | 121 | -0.11 | 0.01 | 0.22 | 0.07 | 0.004 | 0.47 | -0.18 | 0.03 | 0.04 | |||
土壤层 Soil layer | 121 | -0.13 | 0.02 | 0.17 | 0.17 | 0.03 | 0.06 | -0.39 | 0.15 | < 0.001 | |||
海拔 | 乔木层 Tree layer | 121 | 0.01 | <0.001 | 0.92 | -0.09 | 0.01 | 0.31 | 0.11 | 0.01 | 0.19 | ||
Elevation | 灌木层 Bush layer* | 106 | 0.02 | <0.001 | 0.86 | 0.06 | 0.003 | 0.57 | -0.01 | < 0.001 | 0.89 | ||
草本层 Herb layer | 121 | 0.09 | 0.007 | 0.35 | -0.04 | 0.002 | 0.66 | <0.001 | < 0.001 | 0.99 | |||
枯落物层 Litter layer | 121 | 0.17 | 0.03 | 0.06 | -0.02 | < 0.001 | 0.82 | 0.06 | 0.004 | 0.47 | |||
土壤层 Soil layer | 121 | 0.48 | 0.23 | < 0.001 | -0.03 | 0.001 | 0.73 | 0.21 | 0.04 | 0.02 |
表4 陕西省森林生态系统各组分氮磷化学计量随经纬度和海拔空间变化分析
Table 4 Spatial pattern analysis of N and P stoichiometry within ecosystem component in relation to latitude, longitude, and elevation in Shaanxi Province
生态系统组分 Ecosystem component | n | N | P | N:P | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
斜率 Slope | R2 | p | 斜率 Slope | R2 | p | 斜率 Slope | R2 | p | |||||
经度 | 乔木层 Tree layer | 121 | 0.02 | 0.001 | 0.80 | -0.03 | 0.001 | 0.72 | -0.04 | 0.001 | 0.70 | ||
Longitude | 灌木层 Bush layer* | 106 | 0.04 | 0.001 | 0.71 | 0.03 | 0.001 | 0.76 | 0.02 | <0.001 | 0.88 | ||
草本层 Herb layer | 121 | -0.12 | 0.03 | 0.05 | -0.26 | 0.07 | 0.004 | 0.16 | 0.03 | 0.07 | |||
枯落物层 Litter layer | 121 | -0.08 | 0.006 | 0.42 | -0.18 | 0.03 | 0.05 | 0.10 | 0.01 | 0.25 | |||
土壤层 Soil layer | 121 | -0.06 | 0.004 | 0.51 | 0.02 | 0.001 | 0.80 | -0.02 | 0.001 | 0.80 | |||
纬度 | 乔木层 Tree layer | 121 | 0.33 | 0.11 | < 0.001 | 0.02 | < 0.001 | 0.86 | 0.22 | 0.05 | 0.01 | ||
Latitude | 灌木层 Bush layer* | 106 | -0.10 | 0.01 | 0.30 | -0.22 | 0.05 | 0.02 | 0.02 | 0.001 | 0.80 | ||
草本层 Herb layer | 121 | -0.07 | 0.004 | 0.47 | -0.15 | 0.02 | 0.11 | 0.14 | 0.02 | 0.12 | |||
枯落物层 Litter layer | 121 | -0.11 | 0.01 | 0.22 | 0.07 | 0.004 | 0.47 | -0.18 | 0.03 | 0.04 | |||
土壤层 Soil layer | 121 | -0.13 | 0.02 | 0.17 | 0.17 | 0.03 | 0.06 | -0.39 | 0.15 | < 0.001 | |||
海拔 | 乔木层 Tree layer | 121 | 0.01 | <0.001 | 0.92 | -0.09 | 0.01 | 0.31 | 0.11 | 0.01 | 0.19 | ||
Elevation | 灌木层 Bush layer* | 106 | 0.02 | <0.001 | 0.86 | 0.06 | 0.003 | 0.57 | -0.01 | < 0.001 | 0.89 | ||
草本层 Herb layer | 121 | 0.09 | 0.007 | 0.35 | -0.04 | 0.002 | 0.66 | <0.001 | < 0.001 | 0.99 | |||
枯落物层 Litter layer | 121 | 0.17 | 0.03 | 0.06 | -0.02 | < 0.001 | 0.82 | 0.06 | 0.004 | 0.47 | |||
土壤层 Soil layer | 121 | 0.48 | 0.23 | < 0.001 | -0.03 | 0.001 | 0.73 | 0.21 | 0.04 | 0.02 |
类型 Types | N (mg·g-1) | P (mg·g-1) | N:P | 文献 Reference |
---|---|---|---|---|
陕西省 乔木 Tree | 4.59 (121) | 0.49 (121) | 10.03 (121) | |
乔木叶片 Tree leaf | 16.73 (121) | 1.29 (121) | 13.87 (121) | |
灌木 Bush1) | 9.46 (106) | 0.90 (106) | 11.38 (106) | This study |
灌木叶片 Bush leaf | 13.54 (106) | 1.08 (106) | 13.52 (106) | |
草本 Herb | 10.70 (121) | 1.07 (121) | 11.32 (121) | |
草本叶片 Herb leaf | 14.66 (121) | 1.38 (121) | 12.17 (121) | |
黄土高原植物叶片 Plants leaf in Loess Plateau | 24.1 (126) | 1.6 (126) | 15.4 (126) | Zheng & Shangguan, 2007 |
长白山针阔混交林 Changbai Shan needle broad-leaved mixed forest | 17.63 (21) | 1.45 (21) | 13.0 (21) | Wang et al., 2011 |
西双版纳热带季雨林 Xishuangbanna tropical monsoon forest | 21.49 (36) | 1.05 (36) | 19 (36) | Wang et al., 2011 |
鼎湖山南亚热带常绿阔叶林 Dinghushan subtropical evergreen broad-leaved forest | 19.82 (21) | 1.02 (21) | 22 (21) | Wang et al., 2011 |
中亚热带天童常绿阔叶林 Middle subtropical Tiantong evergreen broad-leaved forest | 11.5 (14) | 0.63 (14) | 17.8 (14) | Yan et al., 2010 |
中亚热带天童常绿针叶林 Middle subtropical Tiantong evergreen coniferous forest | 9.98 (16) | 0.66 (16) | 14.2 (16) | Yan et al., 2010 |
中亚热带天童落叶阔叶林 Middle subtropical Tiantong deciduous broad-leaved forest | 14.7 (14) | 1.3 (14) | 11.1 (14) | Yan et al., 2010 |
中国植物叶片 Chinese plants leaf | 19.09 (554) | 1.56 (647) | 15.39 (546) | Ren et al., 2007 |
中国植物叶片 Chinese plants leaf | 20.24 (554) | 1.46 (745) | 16.3 (547) | Han et al., 2005 |
全球植物叶片 Global plants leaf | 20.09 (1 251) | 1.77 (923) | 13.8 (894) | Reich & Oleksyn, 2004 |
全球植物叶片 Global plants leaf | 20.62 (398) | 1.99 (406) | 12.7 (325) | Elser et al., 2000a |
表5 陕西省植被层氮磷化学计量特征与其他研究结果的比较
Table 5 Comparisons of N and P stoichiometric characteristics of vegetation in Shaanxi Province with others studies
类型 Types | N (mg·g-1) | P (mg·g-1) | N:P | 文献 Reference |
---|---|---|---|---|
陕西省 乔木 Tree | 4.59 (121) | 0.49 (121) | 10.03 (121) | |
乔木叶片 Tree leaf | 16.73 (121) | 1.29 (121) | 13.87 (121) | |
灌木 Bush1) | 9.46 (106) | 0.90 (106) | 11.38 (106) | This study |
灌木叶片 Bush leaf | 13.54 (106) | 1.08 (106) | 13.52 (106) | |
草本 Herb | 10.70 (121) | 1.07 (121) | 11.32 (121) | |
草本叶片 Herb leaf | 14.66 (121) | 1.38 (121) | 12.17 (121) | |
黄土高原植物叶片 Plants leaf in Loess Plateau | 24.1 (126) | 1.6 (126) | 15.4 (126) | Zheng & Shangguan, 2007 |
长白山针阔混交林 Changbai Shan needle broad-leaved mixed forest | 17.63 (21) | 1.45 (21) | 13.0 (21) | Wang et al., 2011 |
西双版纳热带季雨林 Xishuangbanna tropical monsoon forest | 21.49 (36) | 1.05 (36) | 19 (36) | Wang et al., 2011 |
鼎湖山南亚热带常绿阔叶林 Dinghushan subtropical evergreen broad-leaved forest | 19.82 (21) | 1.02 (21) | 22 (21) | Wang et al., 2011 |
中亚热带天童常绿阔叶林 Middle subtropical Tiantong evergreen broad-leaved forest | 11.5 (14) | 0.63 (14) | 17.8 (14) | Yan et al., 2010 |
中亚热带天童常绿针叶林 Middle subtropical Tiantong evergreen coniferous forest | 9.98 (16) | 0.66 (16) | 14.2 (16) | Yan et al., 2010 |
中亚热带天童落叶阔叶林 Middle subtropical Tiantong deciduous broad-leaved forest | 14.7 (14) | 1.3 (14) | 11.1 (14) | Yan et al., 2010 |
中国植物叶片 Chinese plants leaf | 19.09 (554) | 1.56 (647) | 15.39 (546) | Ren et al., 2007 |
中国植物叶片 Chinese plants leaf | 20.24 (554) | 1.46 (745) | 16.3 (547) | Han et al., 2005 |
全球植物叶片 Global plants leaf | 20.09 (1 251) | 1.77 (923) | 13.8 (894) | Reich & Oleksyn, 2004 |
全球植物叶片 Global plants leaf | 20.62 (398) | 1.99 (406) | 12.7 (325) | Elser et al., 2000a |
[1] | Bott T, Meyer GA, Young EB (2008). Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments.New Phytologist, 180, 631-641. |
[2] | Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form.Ecography, 36, 178-184. |
[3] | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass?Biogeochemistry, 85, 235-252. |
[4] | Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000a). Nutritional constraints in terrestrial and freshwater food webs.Nature, 408, 578-580. |
[5] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000b). Biological stoichiometry from genes to ecosystems.Ecology Letters, 3, 540-550. |
[6] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266. |
[7] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385. |
[8] | Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796. |
[9] | Hedin LO, Vitousek PM, Matson PA (2003). Nutrient losses over four million years of tropical forest development.Ecology, 84, 2231-2255. |
[10] | Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary productivity.Global Ecology and Biogeography, 14, 585-598. |
[11] | Li A, Guo DL, Wang ZQ, Liu HY (2010). Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: A hierarchical pattern.Functional Ecology, 24, 224-232. |
[12] | Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China.Chinese Journal of Plant Ecology, 34, 64-71. |
(in Chinese with English abstract) [刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 34, 64-71.] | |
[13] | Ma YZ, Zhong QL, Jin BJ, Lu HD, Guo BQ, Zheng Y, Li M, Cheng DL (2015). Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China.Chinese Journal of Plant Ecology, 39, 159-166. |
(in Chinese with English abstract) [马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 郑媛, 李曼, 程栋梁 (2015). 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 39, 159-166.] | |
[14] | Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter.Ecological Monographs, 80, 89-106. |
[15] | McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios.Ecology, 85, 2390-2401. |
[16] | Minden V, Kleyer M (2014). Internal and external regulation of plant organ stoichiometry.Plant Biology, 16, 897-907. |
[17] | Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth.Ecology Letters, 8, 636-642. |
[18] | Oleksyn J, Modrzýnski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P (1998). Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation.Functional Ecology, 12, 573-590. |
[19] | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149. |
[20] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[21] | Reich PB, Oleksyn J, Tjoelker MG (1996). Needle respiration and nitrogen concentration in Scots pine populations from a broad latitudinal range: A common garden test with field-grown trees.Functional Ecology, 10, 768-776. |
[22] | Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC.Chinese Journal of Environmental Science, 28, 2665-2673. |
(in Chinese with English abstract) [任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.] | |
[23] | Tao Y, Zhang YM (2015). Leaf and soil stoichiometry of four herbs in the Gurbantunggut Desert, China.Chinese Journal of Applied Ecology, 26, 659-665. |
(in Chinese with English abstract) [陶冶, 张元明 (2015). 古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征. 应用生态学报, 26, 659-665.] | |
[24] | Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data.Biogeochemistry, 98, 139-151. |
[25] | Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007). Controls over foliar N:P ratios in tropical rain forests.Ecology, 88, 107-118. |
[26] | Wang JY, Wang SQ, Li RL, Yan JH, Sha LQ, Han SJ (2011). C:N:P stoichiometric characteristics of four forest types’ dominant tree species in China.Chinese Journal of Plant Ecology, 35, 587-595. |
(in Chinese with English abstract) [王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰 (2011). 中国四种森林类型主要优势植物的C:N:P化学计量学特征. 植物生态学报, 35, 587-595.] | |
[27] | Wang M, Moore TR (2014). Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type.Ecosystems, 17, 673-684. |
[28] | Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements.Acta Ecologica Sinica, 28, 3937-3947. |
(in Chinese with English abstract) [王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] | |
[29] | Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003). Temperature and the chemical composition of poikilothermic organisms.Functional Ecology, 17, 237-245. |
[30] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships.New Phytologist, 166, 485-496. |
[31] | Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China.Chinese Journal of Plant Ecology, 34, 48-57. |
(in Chinese with English abstract) [阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.] | |
[32] | Yuan ZY, Chen HYH (2012). A global analysis of fine root production as affected by soil nitrogen and phosphorus.Proceedings of the Royal Society B: Biological Sciences, 279, 3796-3802. |
[33] | Yuan ZY, Chen HYH, Reich PB (2011). Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.Nature Communications, 2, 344. |
[34] | Zheng SX, Shangguan ZP (2007). Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China.Trees, 21, 357-370. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[5] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[9] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[10] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[11] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[12] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[13] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[14] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[15] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19