植物生态学报 ›› 2016, Vol. 40 ›› Issue (12): 1267-1275.DOI: 10.17521/cjpe.2016.0146
所属专题: 生态化学计量
雍艳华, 张霞, 王绍明, 吴玲*
出版日期:
2016-12-10
发布日期:
2016-12-30
通讯作者:
吴玲
基金资助:
Yan-Hua YONG, Xia ZHANG, Shao-Ming WANG, Ling WU*
Online:
2016-12-10
Published:
2016-12-30
Contact:
Ling WU
摘要:
对盐生植物体内器官盐分积累和碳(C)、氮(N)、磷(P)化学计量特征的研究, 有助于了解盐生植物养分、盐分的分配机制和其对盐渍环境的适应策略。该文选择新疆4种典型的真盐生植物(3种灌木植物: 盐节木(Halocnemum strobilaceum)、小叶碱蓬(Suaeda microphylla)、盐爪爪(Kalidium foliatum), 1种草本植物: 盐角草(Salicornia europaea)为研究对象, 对比研究了它们的根、茎、叶中的盐分积累和C、N、P化学计量特征以及二者间的相关性。结果显示: 1)在生长旺盛期, 4种盐生植物体内盐分积累可形成“盐岛”效应(Na+、Cl-和电导率随盐离子从植物根部向顶端运输过程呈显著增加的趋势)。2) 4种盐生植物中灌木群落的生长主要受到P的限制; 草本群落的生长受N和P (偏P)共同限制。3)器官、物种和二者的交互作用均能影响盐生植物的盐分(除Mg2+外)特征和C、N、P生态化学计量特征。4) 4种盐生植物C与N、P之间显著负相关, N与P之间显著正相关。5)盐生植物体内总盐分、Na+和K+与N、N:P之间呈显著正相关关系, 与C、C:N、C:P之间呈显著负相关关系, 而K+和CO32-与P之间却显著正相关。盐生植物体内盐分和养分在应对盐渍环境上存在一定的相互促进关系, 增施N肥有助于盐生植物对氯化物盐渍土的脱盐。这些发现为了解盐渍生境中盐生植物的生理生态适应及盐渍土的改良提供一定的理论依据。
雍艳华, 张霞, 王绍明, 吴玲. 新疆典型盐生植物营养器官盐分积累与生态化学计量特征. 植物生态学报, 2016, 40(12): 1267-1275. DOI: 10.17521/cjpe.2016.0146
Yan-Hua YONG, Xia ZHANG, Shao-Ming WANG, Ling WU. Salt accumulation in vegetative organs and ecological stoichiometry characteristics in typical halophytes in Xinjiang, China. Chinese Journal of Plant Ecology, 2016, 40(12): 1267-1275. DOI: 10.17521/cjpe.2016.0146
图1 4种盐生植物不同部位盐离子浓度和电导率的变化(平均值±标准偏差, n = 51)。A, 盐节木。B, 小叶碱蓬。C, 盐角草。D, 盐爪爪。同行不同字母表示同种植物不同部位差异显著(p < 0.05)。
Fig. 1 Changes in salt ion concentrations and electrical conductivity (EC) in different organs of the four halophytes (mean ± SD, n = 51). A, Halocnemum strobilaceum. B, Suaeda microphylla. C, Salicornia europaea. D, Kalidium foliatum. Different letters in the same row represent significant differences in different organ of the same plant (p < 0.05).
参数 Parameter | 器官 Organs | 物种 Species | 器官 × 物种 Organs × Species | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
CO32- | 364.369 | 0.000 | 72.175 | 0.000 | 44.579 | 0.000 |
HCO32- | 6.517 | 0.001 | 8.954 | 0.000 | 5.310 | 0.000 |
Cl- | 1 010.369 | 0.000 | 572.659 | 0.000 | 96.583 | 0.000 |
SO42- | 52.412 | 0.000 | 52.390 | 0.000 | 10.354 | 0.000 |
Ca2+ | 25.744 | 0.000 | 95.178 | 0.000 | 25.199 | 0.000 |
Mg2+ | 3.834 | 0.011 | 0.909 | 0.447 | 1.343 | 0.252 |
Na+ | 463.381 | 0.000 | 137.768 | 0.000 | 39.592 | 0.000 |
K+ | 57.699 | 0.000 | 37.648 | 0.000 | 15.198 | 0.000 |
EC | 3 052.023 | 0.000 | 1 126.740 | 0.000 | 220.069 | 0.000 |
C | 91.426 | 0.000 | 32.904 | 0.000 | 4.699 | 0.000 |
N | 883.924 | 0.000 | 32.904 | 0.000 | 4.699 | 0.000 |
P | 317.373 | 0.000 | 118.515 | 0.000 | 86.413 | 0.000 |
C:N | 167.700 | 0.000 | 43.131 | 0.000 | 5.884 | 0.000 |
C:P | 149.945 | 0.000 | 54.053 | 0.000 | 25.577 | 0.000 |
N:P | 63.942 | 0.000 | 141.600 | 0.000 | 56.690 | 0.000 |
表1 植物器官和物种对盐生植物盐离子、电导率(EC)和总有机碳、全氮、全磷及其化学计量比影响的方差分析
Table 1 Analysis of variance on salt ions, electrical conductivity (EC), total organic carbon, total N, total P and stoichiometric ratios of the halophyte organs and species
参数 Parameter | 器官 Organs | 物种 Species | 器官 × 物种 Organs × Species | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
CO32- | 364.369 | 0.000 | 72.175 | 0.000 | 44.579 | 0.000 |
HCO32- | 6.517 | 0.001 | 8.954 | 0.000 | 5.310 | 0.000 |
Cl- | 1 010.369 | 0.000 | 572.659 | 0.000 | 96.583 | 0.000 |
SO42- | 52.412 | 0.000 | 52.390 | 0.000 | 10.354 | 0.000 |
Ca2+ | 25.744 | 0.000 | 95.178 | 0.000 | 25.199 | 0.000 |
Mg2+ | 3.834 | 0.011 | 0.909 | 0.447 | 1.343 | 0.252 |
Na+ | 463.381 | 0.000 | 137.768 | 0.000 | 39.592 | 0.000 |
K+ | 57.699 | 0.000 | 37.648 | 0.000 | 15.198 | 0.000 |
EC | 3 052.023 | 0.000 | 1 126.740 | 0.000 | 220.069 | 0.000 |
C | 91.426 | 0.000 | 32.904 | 0.000 | 4.699 | 0.000 |
N | 883.924 | 0.000 | 32.904 | 0.000 | 4.699 | 0.000 |
P | 317.373 | 0.000 | 118.515 | 0.000 | 86.413 | 0.000 |
C:N | 167.700 | 0.000 | 43.131 | 0.000 | 5.884 | 0.000 |
C:P | 149.945 | 0.000 | 54.053 | 0.000 | 25.577 | 0.000 |
N:P | 63.942 | 0.000 | 141.600 | 0.000 | 56.690 | 0.000 |
生活型 Life form | 群落 Community | 器官 Organ | C (g·kg-1) | N ( g·kg-1) | P ( g·kg-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|---|---|
半灌木Subshrub | 盐节木 Halocnemum strobilaceum | 根 Root | 510.24 ± 10.01a | 10.47 ± 0.09a | 1.84 ± 0.02a | 58.37 ± 3.04a | 735.72 ± 42.34a | 12.60 ± 0.13b |
老茎 Old stem | 398.92 ± 6.07b | 10.00 ± 0.74b | 1.42 ± 0.07b | 46.68 ± 2.72b | 728.25 ± 38.87a | 15.65 ± 1.55b | ||
嫩茎 Yong stem | 278.31 ± 10.52c | 24.58 ± 0.13b | 1.74 ± 0.04a | 13.21 ± 0.57c | 414.74 ± 25.79b | 31.37 ± 0.62a | ||
小叶碱蓬 Halocnemum strobilaceum | 根 Root | 514.22 ± 46.59ab | 9.94 ± 0.13c | 1.03 ± 0.01c | 60.32 ± 4.83a | 1288.97 ± 106.46a | 21.44 ± 2.11ab | |
下部茎 The lower stem | 497.76 ± 6.07ab | 8.72 ± 0.12d | 1.02 ± 0.05c | 64.24 ± 1.61a | 1213.49 ± 74.16a | 18.88 ± 0.70b | ||
中部茎 The middle stem | 510.24 ± 16.07a | 8.70 ± 0.34d | 1.72 ± 0.05b | 68.52 ± 4.76a | 764.68 ± 36.85b | 11.18 ± 0.44c | ||
上部茎 The upper stem | 397.59 ± 23.86b | 12.59 ± 0.18b | 2.55 ± 0.09a | 36.83 ± 1.70b | 402.71 ± 32.97c | 10.92 ± 0.46c | ||
叶 Leaf | 295.54 ± 15.05c | 27.65 ± 0.14a | 2.58 ± 0.02a | 12.47 ± 0.59c | 296.19 ± 17.33c | 23.75 ± 0.32a | ||
小灌木Undershrub | 盐爪爪 Kalidium foliatum | 根 Root | 487.71 ± 12.15a | 7.93 ± 1.18d | 1.41 ± 0.02b | 72.73 ± 10.30a | 895.60 ± 24.38a | 12.50 ± 1.94b |
下部茎 The lower stem | 440.00 ± 40.81ab | 9.31 ± 0.55b | 0.81 ± 0.01c | 55.29 ± 6.21a | 1405.72 ± 144.23a | 25.49 ± 1.72a | ||
中部茎 The middle stem | 461.20 ± 38.34a | 10.79 ± 0.92cd | 0.90 ± 0.05c | 50.09 ± 5.77a | 1326.79 ± 178.27ab | 26.60 ± 3.41a | ||
上部茎 The upper stem | 371.08 ± 18.79b | 19.12 ± 1.91b | 1.34 ± 0.00b | 22.73 ± 1.34b | 716.54 ± 36.28b | 31.65 ± 3.15a | ||
叶 Leaf | 336.63 ± 10.01b | 22.51 ± 0.18ab | 2.02 ± 0.01a | 17.54 ± 0.61b | 430.08 ± 13.85c | 24.64 ± 0.28a | ||
一年生草本 Annual herb | 盐角草 Salicornia europaea | 根 Root | 397.59 ± 28.67a | 5.57 ± 0.16b | 2.09 ± 0.23a | 83.39 ± 6.27a | 496.43 ± 85.60b | 5.94 ± 0.72c |
下部茎 The lower stem | 398.92 ± 20.40a | 5.88 ± 0.15b | 1.29 ± 0.05c | 79.27 ± 6.08a | 800.65 ± 64.89a | 10.10 ± 0.25b | ||
中部茎 The middle stem | 405.54 ± 39.76ab | 5.75 ± 0.59b | 0.89 ± 0.03b | 83.01 ± 13.90ab | 1176.98 ± 146.72a | 14.26 ± 1.11ab | ||
上部茎 The upper stem | 296.87 ± 25.56b | 11.08 ± 0.23a | 1.62 ± 0.11ab | 31.23 ± 2.22b | 476.89 ± 69.70b | 15.22 ± 1.13a |
表2 4种盐生植物盐离子与化学计量特征的相关系数
Table 2 Correlation coefficients between salt ions and stoichiometry in the four halophytes
生活型 Life form | 群落 Community | 器官 Organ | C (g·kg-1) | N ( g·kg-1) | P ( g·kg-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|---|---|
半灌木Subshrub | 盐节木 Halocnemum strobilaceum | 根 Root | 510.24 ± 10.01a | 10.47 ± 0.09a | 1.84 ± 0.02a | 58.37 ± 3.04a | 735.72 ± 42.34a | 12.60 ± 0.13b |
老茎 Old stem | 398.92 ± 6.07b | 10.00 ± 0.74b | 1.42 ± 0.07b | 46.68 ± 2.72b | 728.25 ± 38.87a | 15.65 ± 1.55b | ||
嫩茎 Yong stem | 278.31 ± 10.52c | 24.58 ± 0.13b | 1.74 ± 0.04a | 13.21 ± 0.57c | 414.74 ± 25.79b | 31.37 ± 0.62a | ||
小叶碱蓬 Halocnemum strobilaceum | 根 Root | 514.22 ± 46.59ab | 9.94 ± 0.13c | 1.03 ± 0.01c | 60.32 ± 4.83a | 1288.97 ± 106.46a | 21.44 ± 2.11ab | |
下部茎 The lower stem | 497.76 ± 6.07ab | 8.72 ± 0.12d | 1.02 ± 0.05c | 64.24 ± 1.61a | 1213.49 ± 74.16a | 18.88 ± 0.70b | ||
中部茎 The middle stem | 510.24 ± 16.07a | 8.70 ± 0.34d | 1.72 ± 0.05b | 68.52 ± 4.76a | 764.68 ± 36.85b | 11.18 ± 0.44c | ||
上部茎 The upper stem | 397.59 ± 23.86b | 12.59 ± 0.18b | 2.55 ± 0.09a | 36.83 ± 1.70b | 402.71 ± 32.97c | 10.92 ± 0.46c | ||
叶 Leaf | 295.54 ± 15.05c | 27.65 ± 0.14a | 2.58 ± 0.02a | 12.47 ± 0.59c | 296.19 ± 17.33c | 23.75 ± 0.32a | ||
小灌木Undershrub | 盐爪爪 Kalidium foliatum | 根 Root | 487.71 ± 12.15a | 7.93 ± 1.18d | 1.41 ± 0.02b | 72.73 ± 10.30a | 895.60 ± 24.38a | 12.50 ± 1.94b |
下部茎 The lower stem | 440.00 ± 40.81ab | 9.31 ± 0.55b | 0.81 ± 0.01c | 55.29 ± 6.21a | 1405.72 ± 144.23a | 25.49 ± 1.72a | ||
中部茎 The middle stem | 461.20 ± 38.34a | 10.79 ± 0.92cd | 0.90 ± 0.05c | 50.09 ± 5.77a | 1326.79 ± 178.27ab | 26.60 ± 3.41a | ||
上部茎 The upper stem | 371.08 ± 18.79b | 19.12 ± 1.91b | 1.34 ± 0.00b | 22.73 ± 1.34b | 716.54 ± 36.28b | 31.65 ± 3.15a | ||
叶 Leaf | 336.63 ± 10.01b | 22.51 ± 0.18ab | 2.02 ± 0.01a | 17.54 ± 0.61b | 430.08 ± 13.85c | 24.64 ± 0.28a | ||
一年生草本 Annual herb | 盐角草 Salicornia europaea | 根 Root | 397.59 ± 28.67a | 5.57 ± 0.16b | 2.09 ± 0.23a | 83.39 ± 6.27a | 496.43 ± 85.60b | 5.94 ± 0.72c |
下部茎 The lower stem | 398.92 ± 20.40a | 5.88 ± 0.15b | 1.29 ± 0.05c | 79.27 ± 6.08a | 800.65 ± 64.89a | 10.10 ± 0.25b | ||
中部茎 The middle stem | 405.54 ± 39.76ab | 5.75 ± 0.59b | 0.89 ± 0.03b | 83.01 ± 13.90ab | 1176.98 ± 146.72a | 14.26 ± 1.11ab | ||
上部茎 The upper stem | 296.87 ± 25.56b | 11.08 ± 0.23a | 1.62 ± 0.11ab | 31.23 ± 2.22b | 476.89 ± 69.70b | 15.22 ± 1.13a |
变量 Variable | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
CO32- | -0.636** | -0.919** | 0.456** | -0.759** | -0.491** | 0.586** |
HCO3- | 0.267 | -0.476** | 0.214 | 0.396** | -0.048 | -0.624** |
Cl- | -0.820** | 0.567** | 0.157 | -0.570 | -0.446** | 0.422** |
SO42- | -0.717** | 0.452** | 0.145 | -0.326* | -0.349* | 0.243 |
Ca2+ | -0.229 | -0.232 | -0.327* | 0.236 | 0.156 | -0.107 |
Mg2+ | -0.378** | 0.347* | 0.365* | -0.354* | -0.458** | 0.058 |
Na+ | -0.807** | 0.792** | 0.270 | -0.706** | -0.478** | 0.580** |
K+ | -0.506** | 0.839** | 0.489** | -0.729** | -0.509** | 0.548** |
EC | -0.865** | 0.719** | 0.268 | -0.658** | -0.505** | 0.493** |
C | 1.000 | -0.635** | -0.429** | 0.682** | 0.682* | -0.319** |
N | -0.635** | 1.000 | 0.497** | -0.906** | -0.548** | 0.639** |
P | -0.429** | 0.497** | 1.000 | -0.437** | -0.887** | -0.233 |
C:N | 0.682** | -0.906** | -0.437** | 1.000 | 0.542** | -0.686** |
C:P | 0.682** | -0.548** | -0.887** | 0.542** | 1.000 | 0.134 |
表3 4种盐生植物盐离子与化学计量特征的相关系数
Table 3 Correlation coefficients between salt ions and stoichiometry in the four halophytes
变量 Variable | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
CO32- | -0.636** | -0.919** | 0.456** | -0.759** | -0.491** | 0.586** |
HCO3- | 0.267 | -0.476** | 0.214 | 0.396** | -0.048 | -0.624** |
Cl- | -0.820** | 0.567** | 0.157 | -0.570 | -0.446** | 0.422** |
SO42- | -0.717** | 0.452** | 0.145 | -0.326* | -0.349* | 0.243 |
Ca2+ | -0.229 | -0.232 | -0.327* | 0.236 | 0.156 | -0.107 |
Mg2+ | -0.378** | 0.347* | 0.365* | -0.354* | -0.458** | 0.058 |
Na+ | -0.807** | 0.792** | 0.270 | -0.706** | -0.478** | 0.580** |
K+ | -0.506** | 0.839** | 0.489** | -0.729** | -0.509** | 0.548** |
EC | -0.865** | 0.719** | 0.268 | -0.658** | -0.505** | 0.493** |
C | 1.000 | -0.635** | -0.429** | 0.682** | 0.682* | -0.319** |
N | -0.635** | 1.000 | 0.497** | -0.906** | -0.548** | 0.639** |
P | -0.429** | 0.497** | 1.000 | -0.437** | -0.887** | -0.233 |
C:N | 0.682** | -0.906** | -0.437** | 1.000 | 0.542** | -0.686** |
C:P | 0.682** | -0.548** | -0.887** | 0.542** | 1.000 | 0.134 |
1 | Aerts R, Chapin FS (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67. |
2 | Baldwin DS, Rees GN, Mitchell AM (2006). The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from freshwater wetland.Wetlands, 26, 455-464. |
3 | Bao SD (2011). Soil Agricultural Chemistry Analysis. Chinese Agricultural Press, Beijing.(in Chinese ) [鲍士旦 (2011). 土壤农化分析. 中国农业出版社, 北京.] |
4 | Donohue SJ, Brown DE (1984). Optimum N concentration in winter wheat grown in coastal region of Virginia.Communications in Soil Science and Plant Analysis, 15, 651-661. |
5 | Duan DY, Liu XJ, Li CZ, Qiao HL (2005). Effects of nitrogen nutrition on the seedlings growth and the change of osmotic regulation substances inSuaeda salsa under NaCl stress. Acta Prataculturae Sinica ,14(5), 63-68.(in Chinese with English abstract)[段德玉, 刘小京, 李存桢, 乔海龙 (2005). N素营养对NaCl胁迫下盐地碱蓬幼苗生长及渗透调节物质变化的影响. 草业学报, 14(5), 63-68.] |
6 | Feng G, Li XL, Zhang FS, Li SX (2000). Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment.Journal of Plant Resources and Environment, 9(2), 22-26.(in Chinese with English abstract)[冯固, 李晓林, 张福锁, 李生秀 (2000). 施磷和接种AM真菌对玉米耐盐性的影响. 植物资源与环境学报, 9(2), 22-26.] |
7 | Flowers TJ, Colmer TD (2008). Salinity tolerance in halophytes.New Phytologist, 179, 945-963. |
8 | Greenway H, Munns R (1980). Mechanisms of salt tolerance in non-halophytes.Plant Physiology ,131, 149-190. |
9 | Guo SQ, Li WJ, Zhang RY, Wang G (2014). Effects of N and P additions on foliar stoichiometry and photosynthetic characteristics ofPotentilla fruiticosa. Guihaia, 34, 629-634.(in Chinese with English abstract)[郭淑青, 李文金, 张仁懿, 王刚 (2014). 氮磷添加对金露梅叶片化学计量及光合特征的影响. 广西植物, 34, 629-634.] |
10 | Han WX, Fang JY, Guo DJ, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 337-385. |
11 | Hidaka A, Kitayama K (2009). Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients.Journal of Ecology, 97, 984-991. |
12 | Hikosaka K (2004). Interspecific difference in the photosynthesis- nitrogen relationship: Patterns, physiological causes, and ecological importance.Journal of Plant Research, 117, 481-494. |
13 | Hong JT, Wu JB, Wang XD (2014). Purple flower needle couch grass root of carbon and phosphorus ecological stoichiometry characteristics. Journal of Mountain Science, 32, 467-474.(in Chinese with English abstract)[洪江涛, 吴建波, 王小丹 (2014). 藏北高寒草原紫花针茅根系碳氮磷生态化学计量特征. 山地学报, 32, 467-474.] |
14 | Hou XY (1982). Vegetation Geography and Advantages of Plant Chemical Composition. Science Press, Beijing.(in Chinese) [侯学煜 (1982). 中国植被地理及优势植物化学成分. 科学出版社, 北京.] |
15 | Koerselman W, Meuleman AFM (1996). The vegetation N/P ratios: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450. |
16 | Krner C (1989). The nutritional status of plants from high altitudes.Oecologia, 81, 379-391. |
17 | Lambers H, Poorter H (2004). Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences . Advances in Ecological Research, 283-362. |
18 | Li Z, Han L, Liu YH, An SQ, Leng X (2012). C, N and P stoichiometric characteristics in leaves ofSuaeda salsa during different growth phase in coastal wetlands of China. Chinese Journal of Plant Ecology, 36, 1054-1061.(in Chinese with English abstract)[李征, 韩琳, 刘玉虹, 安树青, 冷欣 (2012). 滨海盐地碱蓬不同生长阶段叶片C、N、P化学计量特征. 植物生态学报, 36, 1054-1061.] |
19 | Ma Y (2015). Responses of Desert Halophyte Foliar Stoichio- metry and Photosynthetic Characteristics to N and P Additions. Master degree dissertation, Xinjiang University, Ürümqi. [马玉(2015). 两种荒漠盐生植物叶片生态化学计量及光合特性对氮磷添加的相应. 硕士学位论文, 新疆大学, 乌鲁木齐.] |
20 | Munns R, Termaat A (1986). Whole plant response to salinity.Plant Physiology ,13, 143-160. |
21 | Niu DC, Li Q, Jing SG, Chang PJ, Fu H (2013). Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China’s Alxa Plateau.Chinese Journal of Pant Ecology, 37, 317-325.(in Chinese with English abstract)[牛得草, 李茜, 江世高, 常佩静, 傅华 (2013). 阿拉善荒漠区6种主要灌木植物叶片C:N:P化学计量比的季节变化. 植物生态学报, 37, 317-325.] |
22 | Peng F, Huang CH, Liao J, Xue X, Wang T (2015). Effect of Kalidium foliatum community on soil salinization. Journal of Desert Research, 35(1), 90-93.(in Chinese with English abstract)[彭飞, 黄翠华, 廖杰, 薛娴, 王涛 (2015). 盐爪爪群落对土壤盐分影响. 中国沙漠, 35(1) , 90-93.] |
23 | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
24 | Rong QQ, Liu JT, Xia JB, LU ZH, Guo CH (2012). Leaf N and P stoichiometry ofTamarix chinensis L in Laizhou Bay wetland. Chinese Journal of Ecology, 31, 3032-3037.(in Chinese with English abstract)[荣戗戗, 刘京涛, 夏江宝, 陆兆华, 郭彩虹 (2012). 莱州湾湿地柽柳叶片N、P生态化学计量特征. 生态学杂志, 31, 3032-3037.] |
25 | Rrezboem FH, Thomas GW (1998). Phosphorus nutrition affects wheat response to water deficit.Agron, 90, 166-171. |
26 | Shabala S, Bose J, Hedrich R (2014). Salt bladders: Do they matter.Trends in Plant Science, 19, 687-691. |
27 | Shao J, Zheng QS, Liu ZP, Ning JF (2005). Effects of phosphorus application on ion distribution in aloe seedlings under seawater stress.Acta Ecologica Sinica, 25, 3167-3171.(in Chinese with English abstract)[邵晶, 郑青松, 刘兆普, 宁建凤 (2005). 磷对海水胁迫下芦荟幼苗离子分布的影响. 生态学报, 25, 3167-3171.] |
28 | Song ZL, Liu HY, Zhao FJ, Xu CY (2014). Ecological stoichiometry of N:P:Si in China’s grasslands. Plant and Soil, 380, 165-174. |
29 | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. 87-104. |
30 | Tu JN, Xiong YC, Zhang X, Yang Y, Zhu LJ, Chen JH, Li ZH, Wang SM (2011). “Fertile island” features of soil available nutrients aroundHalostachys caspica shrub in the alluvial fan area of Manas River Watershed. Acta Ecologica Sinica, 31, 2461-2470.(in Chinese with English abstract)[涂锦娜, 熊友才, 张霞, 杨岩, 朱丽洁, 陈接华, 李志华, 王绍明 (2011). 玛河流域扇缘带盐穗木土壤速效养分的“肥岛”特征. 生态学报, 31, 2461-2470.] |
31 | Wang CM, Zhang JL, Liu XS (2009). Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+.Plant, Cell & Environment, 32, 486-496. |
32 | Wang DM, Yang HM (2011). C and N ecological characteristics of chemical metrology in different growth period of four kinds of forages.Pratacultural Science, 28, 921-925.(in Chinese with English abstract)[王冬梅, 杨惠敏 (2011). 4种牧草不同生长期C、N生态化学计量特征. 草业科学, 28, 921-925.] |
33 | Wang JP, Tian CY (2011). The Characteristics analysis of the growth and salt accumulation ofSalicornia europaea under different levels of nitrogen and phosphorus. Acta Prataculturae Sinica, 20, 232-243.(in Chinese with English abstract)[王界平, 田长彦 (2011). 不同氮磷水平下盐角草生长及盐分积累特征分析. 草业学报, 20, 232-243.] |
34 | Wang ZQ, Zu SQ, Yu RP (1993). Saline Soil in China. Science Press, Beijing. 400-511.(in Chinese) [王遵亲, 祝寿泉, 俞仁培 (1993). 中国盐渍土. 科学出版社, 北京. 400-511.] |
35 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M, Niinemets, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature ,428, 821-827. |
36 | Wu TG, Chen BF, Xiao YH, Pan YJ, Chen Y, Xiao YH (2010). Leaf stoichiometry of tree forest types in Pearl River Delta, South China. Chinese Journal of Plant Ecology, 34, 58-63.(in Chinese with English abstract)[吴统贵, 陈步峰, 肖以华, 潘勇军, 陈勇, 萧江华 (2010). 珠江三角洲3种典型森林类型乔木叶片生态化学计量学. 植物生态学报, 34, 58-63.] |
37 | Xi JB, Zhang FS, Chen Y, Mao DR, Yin CH, Tian CY (2004). A preliminary study on salt contents of soil in root-canopy area of halophytes.Journal of Applied Ecology, 15, 53-58.(in Chinese with English abstract)[郗金标, 张福锁, 陈阳, 毛达如, 尹传华, 田长彦 (2004). 盐生植物根冠区土壤盐分变化的初步研究. 应用生态学报, 15, 53-58.] |
38 | Yan K, Fu DG, He F, Duan CQ (2011). Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China.Chinese Journal of Plant Ecology, 35, 353-361.(in Chinese with English abstract)[阎凯, 付登高, 何峰, 段昌群 (2011). 滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征. 植物生态学报, 35, 353-361.] |
39 | Yang K, Huang JH, Dong D, Ma WH, He JS (2010). Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China.Chinese Journal of Plant Ecology, 34, 17-22.(in Chinese with English abstract)[杨阔, 黄建辉, 董丹, 马文红, 贺金生 (2010). 青藏高原草地植物群落冠层叶片氮磷化学计量学分析. 植物生态学报, 34, 17-22.] |
40 | Yin CH, Feng G, Tian CY, Bai DS, Zhang FS (2007). Influence of tamarisk shrub on the distribution of soil salinity and moisture on the edge of Taklamakan Desert. China Environmental Science, 27, 670-675.(in Chinese with English abstract)[尹传华, 冯固, 田长彦, 白灯莎, 张福锁 (2007). 塔克拉玛干沙漠边缘柽柳对土壤水盐分布的影响. 中国环境科学, 27, 670-675.] |
41 | Yu Q, Chen Q, Elser JJ (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability.Ecology Letters, 13, 1390-1399. |
42 | Zhang JL, Li HR, Guo SY, Wang SM, Shi HZ, Han QQ, Bao AK, Ma Q (2015). Research advances in higher plant adaptation to salt stress.Acta Prataculturae Sinica, 24(12), 220-236.(in Chinese with English abstract)[张金林, 李慧茹, 郭姝媛, 王锁民, 施华中, 韩庆庆, 包爱科, 马青 (2015). 高等植物适应盐逆境研究进展. 草业学报, 24(12), 220-236.] |
43 | Zhang JL, Shi HZ (2013). Physiological and molecular mechanisms of plant salt tolerance.Photosynthesis Research, 115, 1-22. |
44 | Zhang K, He MZ, LI XR, Tan HJ, Gao YH, LI G, Han GJ, Wu YY (2014). Foliar carton, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert. Acta Ecologica Sinica, 34, 6538-6547.(in Chinese with English abstract)[张珂, 何明珠, 李新荣, 谭会娟, 高艳红, 李刚, 韩国君, 吴杨杨 (2014). 阿拉善荒漠典型植物叶片碳氮磷化学计量特征. 生态学报, 34, 6538-6547.] |
45 | Zhang LH, Chen XB (2015). Characteristics of “salt island” and “fertile island” forTamarix chinensis and soil carton, nitrogen and phosphorus ecological stoichiometry in saline-alkali land. Journal of Applied Ecology, 26, 653-658.(in Chinese with English abstract)[张立华, 陈小兵 (2015). 盐碱地柽柳“盐岛”和“肥岛”效应及其碳氮磷生态化学计量学特征. 应用生态学报, 26, 653-658.] |
46 | Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N (2010). The nitrogen phosphorus stoichiometry of different plant functional groups four dominant species of typical steppes in China.Acta Prataculturae Sinica, 18, 503-509.(in Chinese with English abstract)[张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 (2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草业学报, 18, 503-509.] |
47 | Zhao KF (2002). Plants adapt to salt adversity.Bulletin of Biology, 37(6), 7-10.(in Chinese with English abstract)[赵可夫 (2002). 植物对盐渍逆境的适应. 生物学通报, 37(6), 7-10.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[5] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[6] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[7] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[8] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[9] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[10] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[11] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[12] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[13] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[14] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[15] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19