植物生态学报 ›› 2019, Vol. 43 ›› Issue (3): 208-216.DOI: 10.17521/cjpe.2018.0295
收稿日期:
2018-11-28
修回日期:
2019-03-05
出版日期:
2019-03-20
发布日期:
2019-05-30
通讯作者:
赵秀海
基金资助:
HAO Shu-Jun,LI Xiao-Yu,HOU Man-Man,ZHAO Xiu-Hai()
Received:
2018-11-28
Revised:
2019-03-05
Online:
2019-03-20
Published:
2019-05-30
Contact:
ZHAO Xiu-Hai
Supported by:
摘要:
群落构建机制研究是生态学研究的热点。长白山自然保护区拥有完整的原始阔叶红松林生态系统, 近年来随着物种多样性丧失愈发严重, 对该地区开展群落构建机制研究显得尤为重要。该研究以长白山不同演替阶段的3块5.2 hm 2固定监测样地(次生杨桦林、次生针阔混交林、原始椴树红松林)为研究对象, 通过采集样地内主要树种的6个关键功能性状(叶面积、比叶面积、叶片厚度、叶氮含量、叶磷含量、最大树高), 分析不同空间尺度下(5 m × 5 m, 10 m × 10 m, 20 m × 20 m, 30 m × 30 m, 40 m × 40 m, 50 m × 50 m和60 m × 60 m)及不同演替阶段群落性状空间值的变化, 结合零模型的模拟结果对长白山温带森林演替过程中的群落构建机制进行讨论。结果表明: 种库大小对于研究结果具有重要影响。在较大的种库下, 环境过滤作用影响显著。而在样地水平进行研究时, 演替早期和中期, 群落性状空间值与零模型模拟值无显著差异, 在演替的晚期, 群落性状空间值显著高于零模型模拟值。结合多个群落功能多样性指数分析发现, 环境过滤和竞争作用共同决定该地区顶级群落的物种组成。在演替早期大量物种迁入, 群落内物种间存在强烈的资源竞争, 而随着演替进行, 部分物种逐渐被竞争排除出群落, 群落中的物种呈现明显的生态位分化, 竞争作用是维持物种共存的主要机制。
郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. 长白山温带森林不同演替阶段群落功能性状的空间变化. 植物生态学报, 2019, 43(3): 208-216. DOI: 10.17521/cjpe.2018.0295
HAO Shu-Jun, LI Xiao-Yu, HOU Man-Man, ZHAO Xiu-Hai. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China. Chinese Journal of Plant Ecology, 2019, 43(3): 208-216. DOI: 10.17521/cjpe.2018.0295
图1 长白山次生杨桦林(PBF)、次生针阔混交林(CBF)、原始椴树红松林(TKF)研究区位置。
Fig. 1 Location of secondary poplar and birch mixed forest (PBF), secondary mixed conifer and broad-leaved forest (CBF), primary Tilia amurensis-Pinus koraiensis mixed forest (TKF) in Changbai Mountains.
林分类型 Forest type | 样地面积 Plot area (hm2) | 经纬度 Longitude & latitude | 平均海拔 Average elevation (m) | 物种数量 Species number | 总胸高断面积 Total basal area (m2) |
---|---|---|---|---|---|
次生杨桦林 PBF | 5.2 (260 m × 200 m) | 42.32° N, 128.13° E | 893 | 69 | 24.74 |
次生针阔混交林 CBF | 5.2 (260 m × 200 m) | 42.35° N, 128.13° E | 810 | 66 | 32.07 |
原始椴树红松林 TKF | 5.2 (260 m × 200 m) | 42.23° N, 128.08° E | 1 023 | 22 | 56.64 |
表1 长白山永久监测样地概况
Table 1 Summary of permanent forest plots in Changbai Mountains
林分类型 Forest type | 样地面积 Plot area (hm2) | 经纬度 Longitude & latitude | 平均海拔 Average elevation (m) | 物种数量 Species number | 总胸高断面积 Total basal area (m2) |
---|---|---|---|---|---|
次生杨桦林 PBF | 5.2 (260 m × 200 m) | 42.32° N, 128.13° E | 893 | 69 | 24.74 |
次生针阔混交林 CBF | 5.2 (260 m × 200 m) | 42.35° N, 128.13° E | 810 | 66 | 32.07 |
原始椴树红松林 TKF | 5.2 (260 m × 200 m) | 42.23° N, 128.08° E | 1 023 | 22 | 56.64 |
功能性状 Functional trait | 单位 Unit | 生态学意义 Ecological meaning |
---|---|---|
叶面积 Leaf area | mm2 | 代表叶片对光的捕获能力, 与环境胁迫和干扰下的生态策略有关 Represents the ability to capture light; linked to ecological strategy with respect to environmental stress and disturbances |
比叶面积 Specific leaf area | mm2·mg-1 | 与叶片光合能力正相关, 与叶片寿命负相关 Positively related to photosynthetic rate and negatively to leaf longevity |
叶片厚度 Leaf thickness | mm | 代表植物抗干扰和高投入的能力 Represents the ability to defy changes and high investment |
叶氮含量 Leaf nitrogen concentration | mg·g-1 | 与光合作用蛋白和最大光合速率有关 Related to the proteins in photosynthetic machinery and maximum photosynthetic rate |
叶磷含量 Leaf phosphorus concentration | mg·g-1 | 与植物最大光合速率以及营养级质量有关 Related to maximum photosynthetic rate and high nutritional quality in food webs |
最大树高 Maximum tree height | m | 代表植株在光垂直梯度所处的位置及竞争能力 Associated with position of the species in the vertical light gradient of plants and competitiveness |
表2 功能性状及生态学意义
Table 2 Functional traits and ecological meaning
功能性状 Functional trait | 单位 Unit | 生态学意义 Ecological meaning |
---|---|---|
叶面积 Leaf area | mm2 | 代表叶片对光的捕获能力, 与环境胁迫和干扰下的生态策略有关 Represents the ability to capture light; linked to ecological strategy with respect to environmental stress and disturbances |
比叶面积 Specific leaf area | mm2·mg-1 | 与叶片光合能力正相关, 与叶片寿命负相关 Positively related to photosynthetic rate and negatively to leaf longevity |
叶片厚度 Leaf thickness | mm | 代表植物抗干扰和高投入的能力 Represents the ability to defy changes and high investment |
叶氮含量 Leaf nitrogen concentration | mg·g-1 | 与光合作用蛋白和最大光合速率有关 Related to the proteins in photosynthetic machinery and maximum photosynthetic rate |
叶磷含量 Leaf phosphorus concentration | mg·g-1 | 与植物最大光合速率以及营养级质量有关 Related to maximum photosynthetic rate and high nutritional quality in food webs |
最大树高 Maximum tree height | m | 代表植株在光垂直梯度所处的位置及竞争能力 Associated with position of the species in the vertical light gradient of plants and competitiveness |
图2 长白山温带森林不同演替阶段样地单个功能性状的加权平均值(CWM)。PBF, 次生杨桦林; CBF, 次生针阔混交林; TKF, 原始椴树红松林。箱型图为重复抽样20次的结果, 黑色三角为样方水平数值; 不同小写字母为多重比较的结果, 表示差异显著(p < 0.05)。
Fig. 2 The weighted average (CWM) of individual functional traits at different successional stages in temperate forests of Changbai Mountains. PBF, secondary poplar and birch mixed forest; CBF, secondary mixed conifer and broad-leaved forest; TKF, primary Tilia amurensis-Pinus koraiensis mixed forest. The box plots show the results of repeated sampling for 20 times. The black triangle is values at plot level; different lowercase letters designate the results of multiple comparisons, and it indicate significant difference (p < 0.05).
图3 长白山温带森林不同演替阶段功能多样性的变化趋势。PBF, 次生杨桦林; CBF, 次生针阔混交林; TKF, 原始椴树红松林。箱型图为重复抽样20次的结果, 黑色三角为样方水平数值; 不同小写字母为多重比较的结果, 表示差异显著(p < 0.05)。
Fig. 3 Trends in functional diversity at different successional stages in temperate forests of Changbai Mountains. PBF, secondary poplar and birch mixed forest; CBF, secondary mixed conifer and broad-leaved forest; TKF, primary Tilia amurensis-Pinus koraiensis mixed forest. FEve, functional uniformity; FDiv, functional divergence; FDis, functional dispersion; RaoQ, functional entropy index. The box plots show the results of repeated sampling for 20 times. The black triangle is the value at plot level; different lowercase letters show the results of multiple comparisons, and it indicate significant difference (p < 0.05).
图4 长白山温带森林不同演替阶段群落性状空间值随空间尺度的变化。A, D, 次生杨桦林。B, E, 次生针阔混交林。C, F, 原始椴树红松林。A, B, C, 种库一。D, E, F, 种库二。SES, 标准化效应值。***, p < 0.001, 表示性状空间观测值与零模型模拟值存在显著差异。
Fig. 4 Changes in the spatial value of community traits at different succession stages with spatial scale in temperate forests of Changbai Mountains. A, D, Secondary poplar forest. B, E, Secondary coniferous and broad-leaved mixed forest. C, F, Primary Tilia amurensis-Pinus koraiensis mixed forest. A, B, C, Species pool 1. D, E, F, Species pool 2. SES, standardized effect size. ***, p < 0.01, it indicates that there is a significant difference between the eigenspace observations and the zero model simulation values.
[1] | Baraloto C, Hardy OJ, Paine CT, Dexter KG, Cruaud C, Dunning LT, Chave J ( 2012). Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690-701. |
[2] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE ( 2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[3] | Cornwell WK, Schwilk DW, Ackerly DD ( 2006). A trait-based test for habitat filtering: Convex hull volume. Ecology, 87, 1465-1471. |
[4] | Diamond JM ( 1975). Assembly of species communities. In: Cody ML, Diamond JM eds. Ecology & Evolution of Communities. Harvard University Press, Cambridge, USA. |
[5] | Díaz S, Quétier F, Cáceres DM, Trainor SF, Pérez-Harguindeguy N, Bret-Harte MS, Finegan B, Peña-Claros M, Poorter L ( 2011). Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature’s benefits to society. Proceedings of the National Academy of Sciences of the United States of America, 108, 895-902. |
[6] | Eviner VT, Chapin III FS ( 2003). Functional matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology, Evolution, and Systematics, 34, 455-485. |
[7] | Fang S, Yuan ZQ, Lin F, Ye J, Hao ZQ, Wang XG ( 2014). Functional and phylogenetic structures of woody plants in broad-leaved Korean pine mixed forest in Changbai Mountains, Jilin, China. Chinese Science Bulletin, 59, 2342-2348. |
[ 房帅, 原作强, 蔺菲, 叶吉, 郝占庆, 王绪高 ( 2014). 长白山阔叶红松林木本植物系统发育与功能性状结构. 科学通报, 59, 2342-2348.] | |
[8] | Grime JP ( 2006). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science, 17, 255-260. |
[9] | Herben T, Goldberg DE ( 2014). Community assembly by limiting similarity vs. competitive hierarchies: Testing the consequences of dispersion of individual traits. Journal of Ecology, 102, 156-166. |
[10] | Hou MM, Li XY, Wang JW, Liu S, Zhao XH ( 2017). Phylogenetic development and functional structures during successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China. Acta Ecologica Sinica, 37, 7503-7513. |
[ 侯嫚嫚, 李晓宇, 王均伟, 刘帅, 赵秀海 ( 2017). 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构. 生态学报, 37, 7503-7513.] | |
[11] | Hutchinson GE ( 1957). Concluding remarks. Cold Spring Harbor Symposiaon Quantitative Biology, 22, 415-427. |
[12] | Hutchinson GE ( 1978). An Introduction to Population Ecology. Yale University Press, New Haven. |
[13] | Kraft N, Ackerly DD ( 2014). The assembly of plant communities. In: Monson RK ed. The Plant Sciences—Ecology and the Environment. Springer, Berlin. 67-88. |
[14] | Kraft NJ, Valencia R, Ackerly DD ( 2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582. |
[15] | Laliberté E, Legendre P ( 2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305. |
[16] | Lavorel S, Grigulis K, McIntyre S, Williams NS, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A ( 2008). Assessing functional diversity in the field-methodology matters! Functional Ecology, 22, 134-147. |
[17] | Lessard JP, Belmaker J, Myers JA, Chase JM, Rahbek C ( 2012 a). Inferring local ecological processes amid species pool influences. Trends in Ecology & Evolution, 27, 600-607. |
[18] | Lessard JP, Borregaard MK, Fordyce JA, Rahbek C, Weiser MD, Dunn RR, Sanders NJ ( 2012 b). Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings Biological Sciences, 279, 266-274. |
[19] | Li XY, Liao JX, Hou MM, Fan XH ( 2016). Multi-scale analysis on community phylogenetic structure of secondary Populus davidiana-Betula platyphylla forest in Changbai Mountains, northeastern China. Journal of Beijing Forestry University, 38(12), 14-20. |
[ 李晓宇, 廖嘉星, 侯嫚嫚, 范秀华 ( 2016). 不同尺度下长白山次生杨桦林群落系统发育结构研究. 北京林业大学报, 38(12), 14-20.] | |
[20] | Li Y, Shipley B, Price JN, Dantas VDL, Tamme R, Westoby M, Laughlin DC ( 2017). Habitat filtering determines the functional niche occupancy of plant communities worldwide. Journal of Ecology, 106, 1001-1009. |
[21] | Litvak MK, Hansell RI ( 1990). A community perspective on the multi-dimensional niche. Journal of Animal Ecology, 59, 931-940. |
[22] | Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F ( 2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96, 1242-1252. |
[23] | Mason NW, de Bello F, Doležal J, Lepš J ( 2011). Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. Journal of Ecology, 99, 788-796. |
[24] | Mason NW, Mouillot D, Lee WG, Wilson JB ( 2005). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112-118. |
[25] | McGill BJ, Enquist BJ, Weiher E, Westoby M ( 2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185. |
[26] | Mouchet MA, Villéger S, Mason NW, Mouillot D ( 2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876. |
[27] | Mouillot D, Stubbs W, Faure M, Dumay O, Tomasini JA, Wilson JB, Do Chi T ( 2005). Niche overlap estimates based on quantitative functional traits: A new family of non-parametric indices. Oecologia, 145, 345-353. |
[28] | Ostertag R, Warman L, Cordell S, Vitousek PM ( 2015). Using plant functional traits to restore Hawaiian rainforest. Journal of Applied Ecology, 52, 805-809. |
[29] | Rosenfeld JS ( 2002). Functional redundancy in ecology and conservation. Oikos, 98, 156-162 |
[30] | Satdichanh M, Millet J, Heinimann A, Nanthavong K, Harrison RD ( 2015). Using plant functional traits and phylogenies to understand patterns of plant community assembly in a seasonal tropical forest in Lao PDR. PLOS ONE, 10, e0130151. DOI: 10.1371/journal.pone.0130151. |
[31] | Song YT, Wang P, Zhou DW ( 2011). Methods of measuring plant community functional diversity. Chinese Journal of Ecology, 30, 2053-2059. |
[ 宋彦涛, 王平, 周道玮 ( 2011). 植物群落功能多样性计算方法, 生态学杂志, 30, 2053-2059.] | |
[32] | Stubbs WJ, Wilson JB ( 2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557-567. |
[33] | Suterine M, Edwards PJ ( 2013). Convergent succession of plant communities is linked to species’ functional traits. Perspectives in Plant Ecology,Evolution and Systematics, 15, 217-225. |
[34] | Swenson NG ( 2013). The assembly of tropical tree communities—The advances and shortcomings of phylogenetic and functional trait analyses. Ecography, 36, 264-276. |
[35] | Swenson NG, Weiser MD ( 2014). On the packing and filling of functional space in eastern North American tree assemblages. Ecography, 37, 1056-1062. |
[36] | Villéger S, Mason NW, Mouillot D ( 2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301. |
[37] | Wang SP, Tang ZY, Qiao XJ, Shen ZH, Wang XP, Zheng CY, Fang JY ( 2013). The influence of species pools and local processes on the community structure: A test case with woody plant communities in China’s mountains. Ecography, 35, 1168-1175. |
[38] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ ( 2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
[39] | Weiher E, Clarke GP, Keddy PA ( 1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309-322. |
[40] | Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S ( 2011). Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366, 2403-2413. |
[41] | Zhou XG, Lu WK, Ye D, Wen YG ( 2014). Assembly mechanism forest community based on phylogeny and functional traits. Guangxi Science, 21, 525-533. |
[ 周晓果, 卢文科, 叶铎, 温远光 ( 2014). 基于系统发育和功能性状的森林群落构建机制. 广西科学, 21, 525-533.] |
[1] | 王文伟 韩伟鹏 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位梯度的短期响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[3] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[4] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[5] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[6] | 祁鲁玉 陈浩楠 库丽洪·赛热别力 籍天宇 孟高德 秦慧颖 王宁 宋逸欣 刘春雨 杜宁 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略分析[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[7] | 罗源林 马文红 张芯毓 苏闯 史亚博 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[8] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[9] | 范敏, 卢奕曈, 王照华, 黄颖琪, 彭羽, 尚佳欣, 张杨. 浑善达克沙地中部斑块格局影响植物多样性及功能性状[J]. 植物生态学报, 2022, 46(1): 51-61. |
[10] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[11] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[12] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[13] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[14] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
[15] | 代景忠, 白玉婷, 卫智军, 张楚, 闫瑞瑞. 切根对羊草营养生长期内植物功能性状的影响[J]. 植物生态学报, 2021, 45(12): 1292-1302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19