植物生态学报 ›› 2020, Vol. 44 ›› Issue (5): 565-574.DOI: 10.17521/cjpe.2020.0009
所属专题: 全球变化与生态系统
邢鹏1,*(), 李彪1,2, 韩一萱1,2, 顾秋锦1,3, 万洪秀1
收稿日期:
2020-01-04
接受日期:
2020-04-19
出版日期:
2020-05-20
发布日期:
2020-04-30
通讯作者:
邢鹏
基金资助:
XING Peng1,*(), LI Biao1,2, HAN Yi-Xuan1,2, GU Qiu-Jin1,3, WAN Hong-Xiu1
Received:
2020-01-04
Accepted:
2020-04-19
Online:
2020-05-20
Published:
2020-04-30
Contact:
XING Peng
Supported by:
摘要:
全球变化已经通过提高水温、改变降水格局和水流状况、促进物种入侵、增加极端事件, 对不同的淡水生态系统造成严重的威胁。该文将全球变化背景下淡水生态学的主要研究内容归纳为: (1)全球变化各要素对个体、种群、群落及至生态系统水平的影响; (2)全球变化过程中生态系统生物地球化学循环的改变; (3)淡水生态系统对全球变化的适应对策。最近10-15年淡水生态系统与全球变化研究快速发展, 取得的重要突破有: (1)阐明淡水生态系统结构与功能对全球气候变化尤其是水温升高的响应过程与机制; (2)揭示淡水生态系统(湿地、湖泊、河流等)是全球碳循环的重要组成部分, 在全球变化因素的影响下呈现有机碳埋藏减少和矿化速率提高。今后的研究中, 需要进一步加强对淡水生态系统全要素的系统观测与整合; 开展以“河流”为介质耦合多系统的碳输运和转化过程研究; 强化基础理论研究揭示淡水生态系统对全球变化的适应机制。
邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望. 植物生态学报, 2020, 44(5): 565-574. DOI: 10.17521/cjpe.2020.0009
XING Peng, LI Biao, HAN Yi-Xuan, GU Qiu-Jin, WAN Hong-Xiu. Responses of freshwater ecosystems to global change: research progress and outlook. Chinese Journal of Plant Ecology, 2020, 44(5): 565-574. DOI: 10.17521/cjpe.2020.0009
排序 Order | 关键词 Key | 中文释义 Chinese | 被引频次 Citation |
---|---|---|---|
1 | Climate change | 气候变化 | 1 883 |
2 | Global change | 全球变化 | 349 |
3 | Greenhouse gas | 温室气体 | 319 |
4 | Global warming | 全球变暖 | 303 |
5 | Hydrology | 水文学 | 266 |
6 | Carbon | 碳 | 211 |
7 | Land use | 土地利用 | 200 |
8 | Temperature | 温度 | 183 |
9 | Remote sensing | 遥感 | 166 |
10 | Eutrophication | 富营养化 | 154 |
11 | Precipitation | 降水 | 152 |
12 | Biodiversity | 生物多样性 | 146 |
13 | Methane | 甲烷 | 133 |
14 | Drought | 干旱 | 120 |
15 | Flooding | 洪水 | 117 |
16 | Sea level rise | 海平面上升 | 117 |
17 | Water resources | 水资源 | 114 |
18 | Water quality | 水质 | 106 |
19 | Modeling | 建模 | 103 |
20 | Ecosystem services | 生态系统服务 | 100 |
表1 近10年全球变化淡水生态系统研究TOP 20热点关键词
Table 1 Top 20 keywords in publications of global change and freshwater ecosystems in the past decade
排序 Order | 关键词 Key | 中文释义 Chinese | 被引频次 Citation |
---|---|---|---|
1 | Climate change | 气候变化 | 1 883 |
2 | Global change | 全球变化 | 349 |
3 | Greenhouse gas | 温室气体 | 319 |
4 | Global warming | 全球变暖 | 303 |
5 | Hydrology | 水文学 | 266 |
6 | Carbon | 碳 | 211 |
7 | Land use | 土地利用 | 200 |
8 | Temperature | 温度 | 183 |
9 | Remote sensing | 遥感 | 166 |
10 | Eutrophication | 富营养化 | 154 |
11 | Precipitation | 降水 | 152 |
12 | Biodiversity | 生物多样性 | 146 |
13 | Methane | 甲烷 | 133 |
14 | Drought | 干旱 | 120 |
15 | Flooding | 洪水 | 117 |
16 | Sea level rise | 海平面上升 | 117 |
17 | Water resources | 水资源 | 114 |
18 | Water quality | 水质 | 106 |
19 | Modeling | 建模 | 103 |
20 | Ecosystem services | 生态系统服务 | 100 |
[1] |
Aeschbach-Hertig W, Gleeson T (2012). Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5, 853-861.
DOI URL |
[2] | Barbier EB (2011). Wetlands as natural assets. Hydrological Sciences Journal, 56, 1360-1373. |
[3] |
Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011). Freshwater methane emissions offset the continental carbon sink. Science, 331, 50.
URL PMID |
[4] | Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009). The boundless carbon cycle. Nature Geoscience, 2, 598-600. |
[5] | Brown LE, Khamis K, Wilkes M, Blaen P, Brittain JE, Carrivick JL, Fell S, Friberg N, Füreder L, Gislason GM, Hainie S, Hannah DM, James WHM, Lencioni V, Olafsson JS, Robinson CT, Saltveit SJ, Thompson C, Milner AM (2018). Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nature Ecology & Evolution, 2, 325-333. |
[6] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[7] | Clark ME, Rose KA, Levine DA, Hargrove WW (2001). Predicting climate change effects on Appalachian Trout: combining GIS and individual-based modeling. Ecological Applications, 11, 161-178. |
[8] | Comyn-Platt E, Hayman G, Huntingford C, Chadburn SE, Burke EJ, Harper AB, Collins WJ, Webber CP, Powell T, Cox PM, Gedney N, Sitch S (2018). Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks. Nature Geoscience, 11, 568-573. |
[9] | Datry T, Foulquier A, Corti R, von Schiller D, Tockner K, Mendoza-Lera C, Clément JC, Gessner MO, Moleón M, Stubbington R, Gücker B, Albariño R, Allen DC, Altermatt F, Arce MI, Arnon S, Banas D, Banegas-Medina A, Beller E, Blanchette ML, Blanco-Libreros JF, Blessing JJ, Boëchat IG, Boersma KS, Bogan MT, Bonada N, Bond NR, Brintrup Barría KC, Bruder A, Burrows RM, Cancellario T, Canhoto C, Carlson SM, Cauvy-Fraunié S, Cid N, Danger M, de Freitas Terra B, de Girolamo AM, de la Barra E, del Campo R, Diaz-Villanueva VD, Dyer F, Elosegi A, Faye E, Febria C, Four B, Gafny S, Ghate SD, Gómez R, Gómez-Gener L, Graça MAS, Guareschi S, Hoppeler F, Hwan JL, Jones JI, Kubheka S, Laini A, Langhans SD, Leigh C, Little CJ, Lorenz S, Marshall JC, Martín E, McIntosh AR, Meyer EI, Miliša M, Mlambo MC, Morais M, Moya N, Negus PM, Niyogi DK, Papatheodoulou A, Pardo I, Pařil P, Pauls SU, Pešić V, Polášek M, Robinson CT, Rodríguez-Lozano P, Rolls RJ, Sánchez-Montoya MM, Savić A, Shumilova O, Sridhar KR, Steward AL, Storey R, Taleb A, Uzan A, Vander Vorste R, Waltham NJ, Woelfle-Erskine C, Zak D, Zarfl C, Zoppini A (2018). A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nature Geoscience, 11, 497-503. |
[10] | Daufresne M, Lengfellner K, Sommer U (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of American, 106, 12788-12793. |
[11] | Davidson NC (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65, 934-941. |
[12] |
Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182.
DOI URL PMID |
[13] | Dugan HA, Bartlett SL, Burke SM, Doubek JP, Krivak-Tetley FE, Skaff NK, Summers JC, Farrell KF, McCullough IM, Morales-Williams AM, Roberts DC, Ouyang Z, Scordo F, Hanson PC, Weathers KC (2017). Salting our freshwater lakes. Proceedings of the National Academy of Sciences of the United States of American, 114, 4453-4458. |
[14] | Eaton JG, Scheller RM (1996). Effects of climate warming on fish thermal habitat in streams of the United States. Limnology and Oceanography, 41, 1109-1115. |
[15] | Erwin KL (2009). Wetlands and global climate change: the role of wetland restoration in a changing world. Wetland Ecology and Management, 17, 71-84. |
[16] |
Griffiths, NA, Tank JL, Royer TV, Rosi-Marshall EJ, Whiles MR, Chambers CP, Frauendorf TC, Evanswhite MA (2009). Rapid decomposition of maize detritus in agricultural headwater streams. Ecological Applications, 19, 133-142.
DOI URL PMID |
[17] | Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010). Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466, 478-481. |
[18] | Hanson PC, Weathers KC, Kratz TK (2016). Networked lake science: How the Global Lake Ecological Observatory Network (GLEON) works to understand, predict, and communicate lake ecosystem response to global change. Inland Waters, 6, 543-554. |
[19] | Hansson LA, Nicolle A, Granéli W, Hallgren P, Kritzberg E, Persson A, Björk J, Nilsson PA, Brönmark C (2013). Food-chain length alters community responses to global change in aquatic systems. Nature Climate Change, 3, 228-233. |
[20] | Ho JC, Michalak AM, Pahlevan N (2019). Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574, 667-670. |
[21] | Hotchkiss ER, Hall Jr RO, Sponseller RA, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J (2015). Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nature Geoscience, 8, 696-699. |
[22] |
Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16, 471-483.
URL PMID |
[23] | Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD (2013). Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences, 75, 151-167. |
[24] | Li Y, Zhang C, Wang N, Han Q, Zhang XZ, Liu Y, Xu LM, Ye WT (2017). Substantial inorganic carbon sink in closed drainage basins globally. Nature Geoscience, 10, 501-506. |
[25] |
McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim E, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW, Saleska SR (2014). Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514, 478-481.
URL PMID |
[26] | O’Gorman EJ, Petchey OL, Faulkner KJ, Gallo B, Gordon TAC, Neto-Cerejeira J, Ólafsson JS, Pichler DE, Thompson MSA, Woodward G (2019). A simple model predicts how warming simplifies wild food webs. Nature Climate Change, 9, 611-616. |
[27] | Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011). Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382-385. |
[28] | Qin B, Zhou J, Elser JJ, Gardner WS, Deng J, Brookes JD (2020). Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environmental Science & Technology, 54, 3191-3198. |
[29] | Rosamond MS, Thuss SJ, Schiff SL (2012). Dependence of riverine nitrous oxide emissions on dissolved oxygen levels. Nature Geoscience, 5, 715-718. |
[30] | Schlesinger WH (2006). Global change ecology. Trends in Ecology & Evolution, 21, 48-351 |
[31] | Schlesinger WH, Cole JJ, Finzi AC, Holland EA (2011). Introduction to coupled biogeochemical cycles. Frontiers in Ecology and the Environment, 9, 5-8. |
[32] | Shields MR, Bianchi TS, Mohrig D, Hutchings JA, Kenney WF, Kolker AS, Curtis JH (2017). Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nature Geoscience, 10, 846-851. |
[33] |
Sorte CJB, Ibanez I, Blumenthal DM (2013). Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecology Letters, 16, 261-270.
URL PMID |
[34] | Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML (2010). A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society, 29, 118-146. |
[35] | Tao S, Fang J, Zhao X, Zhao S, Shen H, Hu H, Tang Z, Wang Z, Guo Q (2015). Rapid loss of lakes on the Mongolian Plateau. Proceedings of the National Academy of Sciences of the United States of American, 112, 2281-2286. |
[36] | Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology & Oceanography, 54, 2298-2314. |
[37] |
Veldkamp TIE, Wada Y, Aerts J, Doll P, Gosling SN, Liu J, Masaki Y, Oki T, Ostberg S, Pokhrel Y, Satoh Y, Kim H, Ward PJ (2017). Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nature Communications, 8, 1-12.
URL PMID |
[38] |
Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR (2010). Global threats to human water security and river biodiversity. Nature, 467, 555-561.
URL PMID |
[39] | Wang R, Dearing JA, Langdon PG, Zhang E, Yang X, Dakos V, Scheffer M (2012). Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature, 492, 419-422. |
[40] | Willner SN, Otto C, Levermann A (2018). Global economic response to river floods. Nature Climate Change, 8, 594-598. |
[41] | Woolway RI, Merchant CJ (2019). Worldwide alteration of lake mixing regimes in response to climate change. Nature Geoscience, 12, 271-276. |
[42] | Wu H, Ding JQ (2014). Recent progress in invasion ecology. Chinese Science Bulletin, 59, 438-448. |
[ 吴昊, 丁建清 (2014). 入侵生态学最新研究动态. 科学通报, 59, 438-448.] | |
[43] | Yu ZL (2017). Ecology: Current Knowledge and Future Challenges. Higher Education Press, Beijin. 490-517. |
[ 于振良 (2017). 生态学的现状与发展趋势. 高等教育出版社, 北京. 490-517.] | |
[44] | Yvon-Durocher G, Hulatt CJ, Woodward G, Trimmer M (2017). Long-term warming amplifies shifts in the carbon cycle of experimental ponds. Nature Climate Change, 7, 209-213. |
[1] | 薛志方, 刘彤, 王立生, 宋继虎, 陈宏阳, 徐玲, 袁也. 额尔齐斯河流域主要支流平原河谷林群落结构及特征[J]. 植物生态学报, 2024, 48(3): 390-402. |
[2] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[3] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[4] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[5] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[6] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[7] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[8] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[9] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[10] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[11] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[12] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[13] | 周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525. |
[14] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[15] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19