植物生态学报 ›› 2024, Vol. 48 ›› Issue (12): 1547-1560.DOI: 10.17521/cjpe.2024.0017 cstr: 32100.14.cjpe.2024.0017
• 综述 • 下一篇
杨佳婷1,2, 潘应骥1,*()(
), 常春玲1, 刘艳杰1
收稿日期:
2024-01-19
接受日期:
2024-06-14
出版日期:
2024-12-20
发布日期:
2024-12-20
通讯作者:
*潘应骥(panyingji@iga.ac.cn)基金资助:
YANG Jia-Ting1,2, PAN Ying-Ji1,*()(
), CHANG Chun-Ling1, LIU Yan-Jie1
Received:
2024-01-19
Accepted:
2024-06-14
Online:
2024-12-20
Published:
2024-12-20
Contact:
*PAN Ying-Ji(panyingji@iga.ac.cn)Supported by:
摘要:
外来植物入侵是世界各地所面临的重要生态安全问题, 外来植物入侵的过程受到包括自身的耐受性、其他生物与非生物因素(降水、温度和土壤养分等)的综合影响。其中, 植物与微生物互作对植物的生长发育和种间竞争等具有重要调控作用。现有研究表明, 本地植物与不同种类土壤微生物的互作对单一物种入侵存在的影响途径包括: 1)本地植物受到病原微生物积累的负面效应更大, 从而增进外来植物的入侵优势; 2)本地植物与共生微生物的互利共生关系有助于其抵御外来植物的入侵, 而外来植物入侵时本地植物与共生微生物之间共生关系的改变则有利于外来植物入侵; 3)具有高养分利用率的外来植物能从腐生微生物的分解过程中获取更多营养, 从而扩大自身的竞争优势。相比于单一物种入侵, 多物种同时入侵可通过种间协同作用分担病原菌压力、与微生物建立共生关系、加速腐生微生物分解过程获取异质性营养等对本地植物形成更大的竞争压力, 并干扰本地植物与土壤微生物互作的平衡。另外, 在全球变化影响下, 本地植物受到来自土壤微生物的负面影响增大, 也能加速外来植物的入侵进程。该文综述了近年来本地植物与土壤微生物的互作对外来植物入侵影响的最新研究进展, 并展望了未来的研究方向和重点。
杨佳婷, 潘应骥, 常春玲, 刘艳杰. 本地植物与土壤微生物互作对植物入侵影响的研究进展. 植物生态学报, 2024, 48(12): 1547-1560. DOI: 10.17521/cjpe.2024.0017
YANG Jia-Ting, PAN Ying-Ji, CHANG Chun-Ling, LIU Yan-Jie. Effects of native plant-soil microbe interaction on plant invasion. Chinese Journal of Plant Ecology, 2024, 48(12): 1547-1560. DOI: 10.17521/cjpe.2024.0017
图1 植物与土壤微生物互作影响植物入侵相关假说之间的关联。蓝色箭头表示负面影响, 红色箭头表示正面影响。
Fig. 1 Hypotheses on plant invasion and plant-soil microbe interactions. Blue arrows indicate negative effect, while red arrows indicate positive effects.
图2 植物与病原微生物、共生微生物、腐生微生物三大类土壤微生物类群的互作对外来植物入侵影响的学术论文发表情况(来源: 中国知网、Web of Science)。检索式为: TS = ((“pathogenic microorganism” OR “soil microbe” OR “plant-microbe interactions”) AND (“plant invasion”)); TS = ((“symbiotic microorganism” OR “soil microbe” OR “plant-microbe interactions”) AND (“plant invasion”)); TS = ((“saprophytic microorganism” OR “soil microbe” OR “plant-microbe interactions”) AND (“plant invasion”)), 学术论文发表的日期为2000年1月1日至2022年12月31日。
Fig. 2 A literature search on the effects of native plant-soil microbe interactions (pathogenic, symbiotic and saprophytic microorganisms) on alien plant invasion. The data sources used were the China National Knowledge Infrastructure (CNKI) and Web of Science. The search focused on publications from January 1, 2000, to December 31, 2022, covering a wide range of microbial interactions. The search terms included: TS = ((“pathogenic microorganism” OR “soil microbe” OR “plant-microbe interactions”) AND (“plant invasion”)); TS = ((“symbiotic microorganism” OR “soil microbe” OR “plant-microbe interactions”) AND (“plant invasion”)); TS = ((“saprophytic microorganism” OR “soil microbe” OR “plant-microbe interactions”) AND (“plant invasion”)).
微生物主要类群 Most dominant microbe | 菌群 Flora | 菌群与植物互作 Plant-microbe interactions | 外来植物 Alien plant species |
---|---|---|---|
病原微生物 Pathogenic microorganism | 半裸镰孢菌、镰刀菌①、油壶菌、格孢腔菌、白粉菌等② Fusarium semitectum, Fusarium①, Olpidium, Pleosporales, Erysiphales, etc.② | 病原微生物可能导致本地植物枯死; 而本地植物相比外来植物需要消耗更多的防御成本以抵御病原菌, 外来植物由此获得入侵优势; 此情况在环境高养分供应下养分波动时加剧 Pathogenic microorganisms may cause the death of native plants that otherwise incur higher metabolic costs to defend against pathogenic attacks. Increased nutrient availability can exacerbate the negative effects of pathogens on native plants | 飞机草①、互花米草、大狼耙草、鬼针草、一年蓬等② Chromolaena odorata①, Spartina alterniflora, Bidens frondose, Bidens pilosa, Erigeron annuus, etc.② |
共生微生物 Symbiotic microorganism | 菌根真菌 Mycorrhizal fungi | 本地植物与共生微生物的共生关系会抑制外来植物生长 The symbiotic relationship between native plants and symbiotic microorganism suppresses alien plants growth | 长刺矢车菊③ Centaurea solstitialis③ |
微生物解除与本地植物的共生关系转向与外来植物共生, 可能降低干旱胁迫对外来植物的伤害 When microbes disrupt mutualistic associations between native plants and their symbiotic microorganisms and then establish symbiotic relationships with alien plants, the alien plants may become more resilient to drought stress | 鬼针草④、瘤突苍耳⑤、金合欢⑥ Bidens pilosa④, Xanthium strumarium⑤, Vachellia farnesiana⑥ | ||
腐生微生物 Saprophytic microorganism | 革兰氏阴性菌、革兰氏阳性菌⑦ Gram-negative bacteria, Gram-positive bacteria⑦ | 微生物分解凋落物为植物提供营养⑦; 外来植物依靠自身养分利用优势获得比本地植物更多的营养⑧⑨ Microbes that accelerate the decomposition of plant litter can indirectly benefit alien plants that possess a superior ability to absorb the resulting nutrients⑦⑧⑨ | 野黑樱桃、红槲栎⑨ Prunus serotina, Quercus rubra⑨ |
表1 本地植物与病原微生物、共生微生物及腐生微生物互作影响外来植物入侵的案例概述
Table 1 Impact of interactions among native plants and various microorganisms—pathogenic, symbiotic, and saprophytic—on the invasion of alien plants
微生物主要类群 Most dominant microbe | 菌群 Flora | 菌群与植物互作 Plant-microbe interactions | 外来植物 Alien plant species |
---|---|---|---|
病原微生物 Pathogenic microorganism | 半裸镰孢菌、镰刀菌①、油壶菌、格孢腔菌、白粉菌等② Fusarium semitectum, Fusarium①, Olpidium, Pleosporales, Erysiphales, etc.② | 病原微生物可能导致本地植物枯死; 而本地植物相比外来植物需要消耗更多的防御成本以抵御病原菌, 外来植物由此获得入侵优势; 此情况在环境高养分供应下养分波动时加剧 Pathogenic microorganisms may cause the death of native plants that otherwise incur higher metabolic costs to defend against pathogenic attacks. Increased nutrient availability can exacerbate the negative effects of pathogens on native plants | 飞机草①、互花米草、大狼耙草、鬼针草、一年蓬等② Chromolaena odorata①, Spartina alterniflora, Bidens frondose, Bidens pilosa, Erigeron annuus, etc.② |
共生微生物 Symbiotic microorganism | 菌根真菌 Mycorrhizal fungi | 本地植物与共生微生物的共生关系会抑制外来植物生长 The symbiotic relationship between native plants and symbiotic microorganism suppresses alien plants growth | 长刺矢车菊③ Centaurea solstitialis③ |
微生物解除与本地植物的共生关系转向与外来植物共生, 可能降低干旱胁迫对外来植物的伤害 When microbes disrupt mutualistic associations between native plants and their symbiotic microorganisms and then establish symbiotic relationships with alien plants, the alien plants may become more resilient to drought stress | 鬼针草④、瘤突苍耳⑤、金合欢⑥ Bidens pilosa④, Xanthium strumarium⑤, Vachellia farnesiana⑥ | ||
腐生微生物 Saprophytic microorganism | 革兰氏阴性菌、革兰氏阳性菌⑦ Gram-negative bacteria, Gram-positive bacteria⑦ | 微生物分解凋落物为植物提供营养⑦; 外来植物依靠自身养分利用优势获得比本地植物更多的营养⑧⑨ Microbes that accelerate the decomposition of plant litter can indirectly benefit alien plants that possess a superior ability to absorb the resulting nutrients⑦⑧⑨ | 野黑樱桃、红槲栎⑨ Prunus serotina, Quercus rubra⑨ |
图3 本地植物与土壤微生物互作对外来植物的影响。本地植物与土壤微生物的互作关系: 蓝色箭头表示负面影响, 红色箭头表示正面影响, 虚线箭头表示根据现有研究成果提出的假设。三大类微生物的主要作用途径: (1)本地植物可能受病原菌的抑制(本地病原菌积累假说)从而降低本地植物对外来植物的竞争优势, 而外来植物通过天敌逃逸假说节约防御成本、进一步扩大其对本地植物的竞争优势(① Eppinga et al., 2006; ② Nijjer et al., 2007; ③ Keane & Crawley, 2002; ④ Blumenthal, 2006; ⑤ Dewalt et al., 2004; ⑥张玉仙等, 2023); (2)本地植物为共生微生物提供生长环境和碳源, 共生微生物能促进本地植物吸收养分和生长, 二者的共生关系可抑制外来植物生长(⑦付伟等, 2017; ⑧郑彤等, 2023)。当外来植物入侵时, 共生微生物可能解除和本地植物的共生关系并与外来植物建立新的共生关系, 从而促进外来植物生长(⑨ Callaway et al., 2008; ⑩ Waller et al., 2016; ⑪ Fumanal et al., 2006); (3)本地植物为腐生微生物提供有机碳源, 腐生微生物通过分解植物凋落物进行腐生循环, 外来植物凭借自身养分利用优势比本地植物获得更多营养(⑦付伟等, 2017; ⑫ Dyderski & Jagodziński, 2019; ⑬ Heckman et al., 2019)。多物种入侵时, 有利于本地植物的共生微生物和腐生微生物可能受到抑制(⑭ Kourtev et al., 2002)。提出假设: (1)不同的外来植物物种可能分担来自病原微生物的压力, 从而获得竞争优势(⑮张惜嘉, 2021); (2)共生微生物可能由与本地植物共生转向与多种外来植物共生(⑩ Waller et al., 2016; ⑪ Fumanal et al., 2006), 多种外来植物可能携带更丰富的共生微生物类群以扩大多物种入侵的优势; (3)腐生微生物分解凋落物产生营养, 多种外来植物物种间的正反馈作用可能加速腐生微生物的分解过程, 提升外来植物的养分利用能力, 从而加大对本地植物的养分竞争压力(⑫ Dyderski & Jagodziński, 2019; ⑬Heckman et al., 2019)。
Fig. 3 Conceptual framework illustrating the effects of soil microbe-native plant interactions on alien plant invasions. Blue arrows indicate negative effect, red arrows indicate positive effects, while dashed arrows represent hypothesized interactions between plants and soil microbes based on existing research. The impact of three main groups of soil microbes—pathogenic, symbiotic, and saprophytic—on native and alien plants can be summarized as follows. (1) Pathogenic microorganisms: native plants can be inhibited by local pathogenic microorganisms (the accumulation of local pathogens hypothesis), while alien plants gain competitive advantages over native plants through the enemy release hypothesis (① Eppinga et al., 2006; ② Nijjer et al., 2007; ③ Keane & Crawley, 2002; ④ Blumenthal, 2006; ⑤ Dewalt et al., 2004; ⑥ Zhang et al., 2023). (2) Symbiotic microorganisms: native plants provide habitat and carbon to symbiotic microorganisms, which in turn enhance nutrient uptake and growth of native plants. The mutualisms between the microbes and native plants can suppress alien plant growth (⑦ Fu et al., 2017; ⑧ Zheng et al., 2023). In plant invasions, these microbes can alter nutrient cycling, either by disrupting existing mutualisms with native plants or forming new ones with alien plants, thereby promoting alien plant growth (⑨ Callaway et al., 2008; ⑩ Waller et al., 2016; ⑪ Fumanal et al., 2006). (3) Saprophytic microorganisms: native plants provide carbon to saprophytic microorganisms, which decompose plant litter. This decomposition can benefit alien plants with higher nutrient absorption capacity (⑦ Fu et al., 2017; ⑫ Dyderski & Jagodziński, 2019; ⑬ Heckman et al., 2019). In multi-species invasions, symbiotic microorganisms and saprophytic microorganisms beneficial to native plants may be suppressed (⑭ Kourtev et al., 2002). We propose the following hypotheses: (1) Alien plants may share pathogen pressure and gain competitive advantages (⑮ Zhang, 2021). (2) Disruption of native plant-symbiotic mutualisms may occur, and increased diversity of symbiotic microorganisms could favor multi-species invasions (⑩ Waller et al., 2016; ⑪ Fumanal et al., 2006). (3) Saprophytic microorganisms may enhance nutrient cycling, and interactions among multiple invasive species could further accelerate decomposition and nutrient uptake, potentially giving alien plants an advantage in multi-species invasions (⑫ Dyderski & Jagodziński, 2019; ⑬ Heckman et al., 2019).
图4 全球变化影响下土壤微生物与本地植物互作影响外来植物入侵进程的案例。蓝色箭头表示负面影响, 红色箭头表示正面影响。全球变化可能通过氮沉降、CO2浓度升高、干旱胁迫等(①方海富等, 2021; ②王文筠, 2019; ③宋会兴等, 2011)减少与本地植物互惠的共生微生物丰度为外来植物创造竞争优势(④ Callaway et al., 2004; ⑤ Laungani & Knops, 2009); 或通过干旱胁迫和养分波动增加本地病原微生物相对丰度(⑥ Fahey et al., 2020; ⑦ Zhang et al., 2023b; ⑧ Nijjer et al., 2007; ⑨ 张玉仙等, 2023), 而由于天敌逃逸效应, 外来植物受到的负面影响较小(⑩ Keane & Crawley, 2002)。
Fig. 4 Case studies examining the effects of interactions between soil microbes and native plants on alien plant invasions under conditions of global change. Blue arrows indicate negative effects, while red arrows indicate positive effects on the interactions between plants and soil microbes. Global change could influence alien plant invasions through several mechanisms: nitrogen deposition (① Fang et al., 2021; ② Wang, 2019; ③ Song et al., 2011), elevated CO2 concentrations, and drought stress, which may decrease the abundance of symbiotic microbes which form mutualisms with native plants (④ Callaway et al., 2004; ⑤ Laungani & Knops, 2009). Additionally, drought stress and nutrient fluctuations might increase the abundance of native pathogenic microorganisms (⑥ Fahey et al., 2020; ⑦ Zhang et al., 2023b; ⑧ Nijjer et al., 2007; ⑨ Zhang et al., 2023). Alien plants could be less affected compared to native plants due to enemy release (⑩ Keane & Crawley, 2002).
[1] |
Afkhami ME, Strauss SY (2016). Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology, 97, 1159-1169.
PMID |
[2] |
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233-266.
PMID |
[3] | Bates SE, Wandrag EM, Barrett LG, Thrall PH, Duncan RP (2021). Soil biotic effects and competition; What are the mechanisms behind being a successful invader? Pedobiologia, 87-88, 150749. DOI: 10.1016/j.pedobi.2021. 150749. |
[4] |
Bever JD (2002). Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B: Biological Sciences, 269, 2595-2601.
PMID |
[5] |
Bi JT, He DH (2009). Research advances in effects of plant on soil microbial diversity. Chinese Agricultural Science Bulletin, 25(9), 244-250.
DOI |
[ 毕江涛, 贺达汉 (2009). 植物对土壤微生物多样性的影响研究进展. 中国农学通报, 25(9), 244-250.] | |
[6] | Blossey B, Notzold R (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887-889. |
[7] |
Blumenthal DM (2006). Interactions between resource availability and enemy release in plant invasion. Ecology Letters, 9, 887-895.
PMID |
[8] |
Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011). Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology, 92, 1027-1035.
PMID |
[9] |
Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J (2008). Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology, 89, 1043-1055.
PMID |
[10] | Callaway RM, Ridenour WM (2004). Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2, 436-443. |
[11] | Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004). Soil biota and exotic plant invasion. Nature, 427, 731-733. |
[12] |
Charlebois JA, Sargent RD (2017). No consistent pollinator- mediated impacts of alien plants on natives. Ecology Letters, 20, 1479-1490.
DOI PMID |
[13] | Chen BM, Peng SL, Wu XP, Wang PL, Ma JX (2016). A bibliometric analysis of researches on topics related to the ecological damage caused by and risk assessments of exotic invasive species from 1995 to 2014. Acta Ecologica Sinica, 36, 6677-6685. |
[ 陈宝明, 彭少麟, 吴秀平, 王鹏龙, 马建霞 (2016). 近20年外来生物入侵危害与风险评估文献计量分析. 生态学报, 36, 6677-6685.] | |
[14] | Chen BM, Wei HJ, Chen WB, Zhu ZC, Yuan YR, Zhang YL, Lan ZG (2018). Effects of plant invasion on soil nitrogen transformation processes and its associated microbial. Chinese Journal of Plant Ecology, 42, 1071-1081. |
[ 陈宝明, 韦慧杰, 陈伟彬, 朱政财, 原亚茹, 张永隆, 蓝志刚 (2018). 外来入侵植物对土壤氮转化主要过程及相关微生物的影响. 植物生态学报, 42, 1071-1081.]
DOI |
|
[15] | Chen YT, Zhang LM, Wang SQ, Zhou LJ (2024). Soil fungal community structure and functional group in response to different soil organic carbon inputs in the temperate forest during the freeze-thaw season. Acta Ecologica Sinica, 44, 2244-2255. |
[ 陈羽彤, 张利敏, 王思琪, 周利军 (2024). 冻融季温带森林土壤真菌群落结构及功能类群对不同土壤有机碳输入的响应. 生态学报, 44, 2244-2255.] | |
[16] | Dai ZC, Zhu B, Wan JSH, Rutherford S (2022). Editorial: global changes and plant invasions. Frontiers in Ecology and Evolution, 10, 845816. DOI: 10.3389/fevo.2022.845816. |
[17] |
Davidson AM, Jennions M, Nicotra AB (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14, 419-431.
DOI PMID |
[18] | Dewalt SJ, Denslow JS, Ickes K (2004). Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology, 85, 471-483. |
[19] | Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021). High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576. |
[20] | Dyderski MK, Jagodziński AM (2019). Functional traits of acquisitive invasive woody species differ from conservative invasive and native species. NeoBiota, 41, 91-113. |
[21] | Elgersma KJ, Yu S, Vor T, Ehrenfeld JG (2012). Microbial- mediated feedbacks of leaf litter on invasive plant growth and interspecific competition. Plant and Soil, 356, 341-355. |
[22] |
Enders M, Havemann F, Ruland F, Bernard-Verdier M, Catford JA, Gómez-Aparicio L, Haider S, Heger T, Kueffer C, Kühn I, Meyerson LA, Musseau C, Novoa A, Ricciardi A, Sagouis A, et al. (2020). A conceptual map of invasion biology: integrating hypotheses into a consensus network. Global Ecology and Biogeography, 29, 978-991.
DOI PMID |
[23] | Eppinga MB, Rietkerk M, Dekker SC, de Ruiter PC, van der Putten WH, van der Putten WH (2006). Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos, 114, 168-176. |
[24] | Fahey C, Koyama A, Antunes PM, Dunfield K, Flory SL (2020). Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. The ISME Journal, 14, 1396-1409. |
[25] | Fang HF, Feng WX, Luo LC, Gao Y, Wang BH, Nasir S, Wei QX, Zou Y, Su SS, Zhang L (2021). Effects of soil microorganisms on chlorophyll fluorescence characteristics of invasive Triadica sebifera with nitrogen deposition. Acta Ecologica Sinica, 41, 9377-9387. |
[ 方海富, 冯为迅, 罗来聪, 高宇, 王佰慧, Shad Nasir, 魏启轩, 邹瑜, 苏思思, 张令 (2021). 氮沉降背景下土壤微生物对入侵植物乌桕叶绿素荧光特征的影响. 生态学报, 41, 9377-9387.] | |
[26] | Feng YL, Lei YB, Wang RF, Callaway RM, Valiente-Banuet A, Inderjit, Li YP, Zheng YL (2009). Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 106, 1853-1856. |
[27] |
Fu W, Wang N, Pang F, Huang YL, Wu J, Qi SS, Dai ZC, Du DL (2017). Soil microbiota and plant invasions: current and future. Biodiversity Science, 25, 1295-1302.
DOI |
[ 付伟, 王宁, 庞芳, 黄玉龙, 吴俊, 祁珊珊, 戴志聪, 杜道林 (2017). 土壤微生物与植物入侵: 研究现状与展望. 生物多样性, 25, 1295-1302.]
DOI |
|
[28] |
Fumanal B, Plenchette C, Chauvel B, Bretagnolle F (2006). Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza, 17, 25-35.
DOI PMID |
[29] | Gao LL, Wei CQ, He YF, Tang XF, Chen W, Xu H, Wu YQ, Wilschut RA, Lu XM (2023). Aboveground herbivory can promote exotic plant invasion through intra- and interspecific aboveground-belowground interactions. New Phytologist, 237, 2347-2359. |
[30] |
Haeuser E, Dawson W, van Kleunen M (2019). Introduced garden plants are strong competitors of native and alien residents under simulated climate change. Journal of Ecology, 107, 1328-1342.
DOI |
[31] | Hamilton EW, Frank DA (2001). Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82, 2397-2402. |
[32] | Hartmann A, Schmid M, van Tuinen D, Berg G (2009). Plant-driven selection of microbes. Plant and Soil, 321, 235-257. |
[33] |
Heckman RW, Halliday FW, Mitchell CE (2019). A growth- defense trade-off is general across native and exotic grasses. Oecologia, 191, 609-620.
DOI PMID |
[34] |
Henriksson A, Wardle DA, Trygg J, Diehl S, Englund G (2016). Strong invaders are strong defenders— Implications for the resistance of invaded communities. Ecology Letters, 19, 487-494.
DOI PMID |
[35] |
Hou QC, Feng YL, Zhou YJ, Ao YM, Chen CX, Xing YJ, Wang QG, Yan GY (2022). Main hypotheses on mechanisms underlying plant invasion: a review. Chinese Journal of Applied Ecology, 33, 3105-3115.
DOI |
[ 侯清晨, 冯燕楼, 周玉洁, 敖玉梅, 陈春晓, 邢亚娟, 王庆贵, 闫国永 (2022). 植物入侵机制的主要假说. 应用生态学报, 33, 3105-3115.]
DOI |
|
[36] | Inderjit (2015). Introduction to the Special Issue: the role of soil microbial-driven belowground processes in mediating exotic plant invasions. AoB PLANTS, 7, plv052. DOI: 10.1093/aobpla/plv052. |
[37] | Keane RM, Crawley MJ (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170. |
[38] |
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333, 880-882.
DOI PMID |
[39] | Kourtev PS, Ehrenfeld JG, Häggblom M (2002). Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152-3166. |
[40] | Kuebbing SE, Nuñez MA (2016). Invasive non-native plants have a greater effect on neighbouring natives than other non-natives. Nature Plants, 2, 16134. DOI: 10.1038/nplants.2016.134. |
[41] |
Laungani R, Knops JMH (2009). Species-driven changes in nitrogen cycling can provide a mechanism for plant invasions. Proceedings of the National Academy of Sciences of the United States of America, 106, 12400-12405.
DOI PMID |
[42] |
Lei YB, Xiao HF, Feng YL (2010). Impacts of alien plant invasions on biodiversity and evolutionary responses of native species. Biodiversity Science, 18, 622-630.
DOI |
[ 类延宝, 肖海峰, 冯玉龙 (2010). 外来植物入侵对生物多样性的影响及本地生物的进化响应. 生物多样性, 18, 622-630.]
DOI |
|
[43] | Levine JM, Adler PB, Yelenik SG (2004). A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975-989. |
[44] | Li CE, Zhang Y, Wang Y, Lin ZX, Zhu QC, Li M, Li DF (2024). Characteristics and influencing factors of rhizosphere fungi of six mangrove plants of the genus Sonneratia. Acta Ecologica Sinica, 44, 2517-2530. |
[ 李传恩, 张颖, 王芸, 林忠鑫, 朱启聪, 李敏, 李单凤 (2024). 六种海桑属红树植物根际真菌特征及其影响因子. 生态学报, 44, 2517-2530.] | |
[45] | Li WH (2013). Contemporary Ecological Research in China. Science Press, Beijing. |
[ 李文华 (2013). 中国当代生态学研究. 科学出版社, 北京.] | |
[46] | Li YQ, Chen Y, Cao WJ, Wang XY, Niu YY (2022). Theoretical basis of ecology for the influence of global change on resources, environment, and ecosystems. Chinese Journal of Applied Ecology, 33, 603-612. |
[ 李玉强, 陈云, 曹雯婕, 王旭洋, 牛亚毅 (2022). 全球变化对资源环境及生态系统影响的生态学理论基础. 应用生态学报, 33, 603-612.]
DOI |
|
[47] | Liao CZ, Tang XP, Cheng XL, Li B, Luo YQ (2010). Nitrogen dynamics of aerial litter of exotic Spartina alterniflora and native Phragmites australis. Biodiversity Science, 18, 631-637. |
[ 廖成章, 唐小平, 程小玲, 李博, 骆亦其 (2010). 外来种互花米草和土著种芦苇空中凋落物氮动态的比较研究. 生物多样性, 18, 631-637.] | |
[48] | Liu MQ, Yang XF, Shi YM, Liu YW, Li XM, Liao WJ (2022). Effects of simulated acid rain on the competitive relationship between invasive Ambrosia artemisiifolia and its co-occurring indigenous forb Bidens bipinnata. Chinese Journal of Plant Ecology, 46, 932-940. |
[ 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金 (2022). 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响. 植物生态学报, 46, 932-940.]
DOI |
|
[49] | Liu R Q (2019). Effects of Plant Roots on Soil Carbon Accumulation Along Subtropical Ever-green Forest Successions. PhD dissertation, East China Normal University, Shanghai. |
[ 刘瑞强 (2019). 亚热带常绿阔叶林演替过程中植物根系对土壤碳累积的影响及机制. 博士学位论文, 华东师范大学, 上海.] | |
[50] | Liu YJ, Huang W, Yang Q, Zheng YL, Li SP, Wu H, Ju RT, Sun Y, Ding JQ (2022). Research advances of plant invasion ecology over the past 10 years. Biodiversity Science, 30, 276-292. |
[ 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清 (2022). 近十年植物入侵生态学重要研究进展. 生物多样性, 30, 276-292.] | |
[51] |
Liu Y, Oduor AMO, Zhang Z, Manea A, Tooth IM, Leishman MR, Xu X, van Kleunen M (2017). Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biology, 23, 3363-3370.
DOI PMID |
[52] |
Lu X, Siemann E, Shao X, Wei H, Ding J (2013). Climate warming affects biological invasions by shifting interactions of plants and herbivores. Global Change Biology, 19, 2339-2347.
DOI PMID |
[53] | Mangla S, Inderjit, Callaway RM (2008). Exotic invasive plant accumulates native soil pathogens which inhibit native plants. Journal of Ecology, 96, 58-67. |
[54] | Marler MJ, Zabinski CA, Callaway RM (1999). Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology, 80, 1180-1186. |
[55] | Maron JL, Klironomos J, Waller L, Callaway RM (2014). Invasive plants escape from suppressive soil biota at regional scales. Journal of Ecology, 102, 19-27. |
[56] |
Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006). Biotic interactions and plant invasions. Ecology Letters, 9, 726-740.
PMID |
[57] | Mozdzer TJ, Caplan JS (2018). Complementary responses of morphology and physiology enhance the stand-scale production of a model invasive species under elevated CO2 and nitrogen. Functional Ecology, 32, 1784-1796. |
[58] | Nguyen C (2003). Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie, 23, 375-396. |
[59] |
Nijjer S, Rogers WE, Siemann E (2007). Negative plant-soil feedbacks may limit persistence of an invasive tree due to rapid accumulation of soil pathogens. Proceedings of the Royal Society B: Biological Sciences, 274, 2621-2627.
DOI PMID |
[60] | Pan XB, Wang C, Yan J, Zhu SF (2018). Impacts of economic globalization and climate change on biological invasion. China Plant Protection, 38(4), 65-69. |
[ 潘绪斌, 王聪, 严进, 朱水芳 (2018). 经济全球化与气候变化对生物入侵的影响浅析. 中国植保导刊, 38(4), 65-69.] | |
[61] | Parra-Tabla V, Alonso C, Ashman TL, Raguso RA, Albor C, Sosenski P, Carmona D, Arceo-Gómez G (2021). Pollen transfer networks reveal alien species as main heterospecific pollen donors with fitness consequences for natives. Journal of Ecology, 109, 939-951. |
[62] | Phillips ML, Weber SE, Andrews LV, Aronson EL, Allen MF, Allen EB (2019). Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecology, 40, 107-117. |
[63] |
Rauschert ESJ, Shea K (2012). Invasional interference due to similar inter- and intraspecific competition between invaders may affect management. Ecological Applications, 22, 1413-1420.
PMID |
[64] | Reinhart KO, Callaway RM (2004). Soil biota facilitate exotic Acer invasions in Europe and North America. Ecological Applications, 14, 1737-1745. |
[65] | Reitstetter R, Yang B, Tews AD, Barberán A (2022). Soil microbial communities and nitrogen associated with cheatgrass invasion in a sagebrush shrubland. Plant and Soil, 479, 325-336. |
[66] | Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 6, 93-107. |
[67] | Schaffner U, Steinbach S, Sun Y, Skjøth CA, de Weger LA, Lommen ST, Augustinus BA, Bonini M, Karrer G, Šikoparija B, Thibaudon M, Müller-Schärer H (2020). Biological weed control to relieve millions from Ambrosia allergies in Europe. Nature Communications, 11, 1745. DOI: 10.1038/s41467-020-15586-1. |
[68] | Shen SY, Pan YF, Chen LR, Tu YL, Pan XY (2023). Plant-soil feedbacks differ between native and introduced populations of Alternanthera philoxeroides. Biodiversity Science, 31, 14-22. |
[ 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云 (2023). 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异. 生物多样性, 31, 14-22.] | |
[69] | Simberloff D, von Holle B (1999). Positive interactions of nonindigenous species: Invasional meltdown? Biological Invasions, 1, 21-32. |
[70] | Song HX, Zhong ZC, Yang WQ, Chen QB (2011). Analysis of the activities of protective enzymes in Bidens pilosa L. inoculated with Glomus mosseae under drought stress. Acta Ecologica Sinica, 31, 2471-2477. |
[ 宋会兴, 钟章成, 杨万勤, 陈其兵 (2011). 摩西球囊霉对三叶鬼针草保护酶活性的影响. 生态学报, 31, 2471-2477.] | |
[71] | Sun SM, Chen JX, Feng WW, Zhang C, Huang K, Guan M, Sun JK, Liu MC, Feng YL (2021). Plant strategies for nitrogen acquisition and their effects on exotic plant invasions. Biodiversity Science, 29, 72-80. |
[ 孙思邈, 陈吉欣, 冯炜炜, 张昶, 黄凯, 管铭, 孙建坤, 刘明超, 冯玉龙 (2021). 植物氮形态利用策略及对外来植物入侵性的影响. 生物多样性, 29, 72-80.] | |
[72] | Trivedi P, Leach JE, Tringe SG, Sa TM, Singh BK (2020). Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 18, 607-621. |
[73] | van Kleunen M, Bossdorf O, Dawson W (2018). The ecology and evolution of alien plants. Annual Review of Ecology, Evolution, and Systematics, 49, 25-47. |
[74] |
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708.
DOI PMID |
[75] | Vitousek PM (1994). Beyond global warming: ecology and global change. Ecology, 75, 1861-1876. |
[76] |
Vogelsang KM, Bever JD (2009). Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 90, 399-407.
PMID |
[77] | Vujanović D, Losapio G, Milić S, Milić D (2022). The impact of multiple species invasion on soil and plant communities increases with invasive species co-occurrence. Frontiers in Plant Science, 13, 875824. DOI: 10.3389/fpls.2022.875824. |
[78] |
Waller LP, Allen WJ, Barratt BIP, Condron LM, França FM, Hunt JE, Koele N, Orwin KH, Steel GS, Tylianakis JM, Wakelin SA, Dickie IA (2020). Biotic interactions drive ecosystem responses to exotic plant invaders. Science, 368, 967-972.
DOI PMID |
[79] | Waller LP, Callaway RM, Klironomos JN, Ortega YK, Maron JL (2016). Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant. Journal of Ecology, 104, 1599-1607. |
[80] | Wang WJ (2019). The Effects of Doubled CO2 on the Physicochemical Properties and Arbuscular Mycorrhizal Infection of the Rhizosphere Soil of Xanthium sibiricum and Its Local Relatives.PhD dissertation, Shenyang Agricultural University, Shenyang. |
[ 王文筠 (2019). CO2倍增对瘤突苍耳及本地近缘植物根围土壤理化性质和丛枝菌根侵染的影响.博士学位论文, 沈阳农业大学, 沈阳.] | |
[81] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI PMID |
[82] | Wolfe BE, Klironomos JN (2005). Breaking new ground: soil communities and exotic plant invasion. BioScience, 55, 477-487. |
[83] | Wu H, Ding JQ (2014). Recent progress in invasion ecology. Chinese Science Bulletin, 59, 438-448. |
[ 吴昊, 丁建清 (2014). 入侵生态学最新研究动态. 科学通报, 59, 438-448.] | |
[84] | Xiao HG (2016). Composite Effects of Joint Invasion of Two Foreign Plants on Soil Microbial Community Structure. PhD dissertation,Jiangsu University, Zhenjiang, Jiangsu. |
[ 肖鸿光 (2016). 两种外来植物共同入侵对土壤微生物群落结构的复合影响. 博士学位论文, 江苏大学, 江苏镇江.] | |
[85] | Yang B, Cui M, Du Y, Ren G, Li J, Wang C, Li G, Dai Z, Rutherford S, Wan JSH, Du D (2022). Influence of multiple global change drivers on plant invasion: additive effects are uncommon. Frontiers in Plant Science, 13, 1020621. DOI: 10.3389/fpls.2022.1020621. |
[86] | Yin D, Meiners SJ, Ni M, Ye Q, He F, Cadotte MW (2022). Positive interactions of native species melt invasional meltdown over long-term plant succession. Ecology Letters, 25, 2584-2596. |
[87] | Yin WD, Wu MK, Tian BL, Yu HW, Wang QY, Ding JQ (2020). Effects of bio-invasion on the Yellow River Basin ecosystem and its countermeasures. Biodiversity Science, 28, 1533-1545. |
[ 殷万东, 吴明可, 田宝良, 于宏伟, 王麒云, 丁建清 (2020). 生物入侵对黄河流域生态系统的影响及对策. 生物多样性, 28, 1533-1545.] | |
[88] | Yu QL, Zhao ZR, Liu L (2023). Advance in the function and regulation of rhizosphere microbiota. Journal of Microbiology, 43(5), 1-8. |
[ 喻其林, 赵梓润, 刘琳 (2023). 根际微生物群落功能与调控的研究进展. 微生物学杂志, 43(5), 1-8.] | |
[89] | Yu XY, Zhu YJ, Wang B, Liu D, Bai H, Jin L, Wang BT, Ruan HH, Mao LF, Jin FJ, Yang N (2021). Effects of nitrogen addition on rhizospheric soil microbial communities of poplar plantations at different ages. Forest Ecology and Management, 494, 119328. DOI: 10.1016/j.foreco.2021.119328. |
[90] | Zhang GL, Bai J, Wang W, Jia J, Huang LB, Kong FL, Xi M (2023a). Plant invasion reshapes the latitudinal pattern of soil microbial necromass and its contribution to soil organic carbon in coastal wetlands. Catena, 222, 106859. DOI: 10.1016/j.catena.2022.106859. |
[91] | Zhang L, Wang H, Chen NN, Zou JW (2012). Effects of soil biotic communities on the seedling performance of native and invasive provenances of Triadica sebifera. Journal of Biosafety, 21, 41-45. |
[ 张令, 王泓, 陈楠楠, 邹建文 (2012). 土壤微生物对不同种源乌桕生长的影响. 生物安全学报, 21, 41-45.] | |
[92] | Zhang X, van Kleunen M, Chang C, Liu Y (2023b). Soil microbes mediate the effects of resource variability on plant invasion. Ecology, 104, e4154. DOI: 10.1002/ecy.4154. |
[93] | Zhang XJ (2021). Effects of Clonal Integration on the Growth and Competition of Alternanthera philoxeroides and Its Related Species under Fluctuating Environment. PhD dissertation, Jiangsu University, Zhenjiang, Jiangsu. |
[ 张惜嘉 (2021). 环境波动条件下克隆整合对喜旱莲子草及其近缘种生长和竞争的影响. 博士学位论文, 江苏大学, 江苏镇江.] | |
[94] | Zhang YX, Huang SW, Duan HJ, Tang H, Liu BY, Li WL (2023). Isolation, identification and antimicrobial activity of endophytic fungi from Polygala fallax Hemsl. Journal of Southern Agriculture, 54, 1136-1145. |
[ 张玉仙, 黄舒玮, 段会洁, 唐辉, 刘宝玉, 李文兰 (2023). 黄花倒水莲内生真菌的分离鉴定及抑菌活性研究. 南方农业学报, 54, 1136-1145.] | |
[95] | Zhang ZJ, Liu YJ, Brunel C, van Kleunen M (2020a). Evidence for Elton’s diversity-invasibility hypothesis from belowground. Ecology, 101, e03187. DOI: 10.1002/ecy.3187. |
[96] | Zhang Z, Liu Y, Brunel C, van Kleunen M (2020b). Soil- microorganism-mediated invasional meltdown in plants. Nature Ecology & Evolution, 4, 1612-1621. |
[97] | Zhao Y, Liu M, Feng Y, Wang D, Feng W, Clay K, Durden LA, Lu X, Wang S, Wei X, Kong D (2020). Release from below- and aboveground natural enemies contributes to invasion success of a temperate invader. Plant and Soil, 452, 19-28. |
[98] | Zheng T, Zhou QX, Ouyang SH (2023). Enhancing function of plant-microbial symbiosis for pollution mitigation and carbon sequestration. Chinese Science Bulletin, 68, 3155-3171. |
[ 郑彤, 周启星, 欧阳少虎 (2023). 植物-微生物共生系统功能强化及其在降污固碳中的作用. 科学通报, 68, 3155-3171.] |
[1] | 杜忠毓, 王佳, 陈光才. 土壤种子库特征对全球变化和人类活动的响应: 研究进展与展望[J]. 植物生态学报, 2024, 48(12): 1561-1575. |
[2] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[3] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[4] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[5] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[6] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[7] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[8] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[9] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[10] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
[11] | 朱良军, 李宗善, 王晓春. 树轮木质部解剖特征及其与环境变化的关系[J]. 植物生态学报, 2017, 41(2): 238-251. |
[12] | 王薪琪, 王传宽, 张泰东. 森林土壤碳氮循环过程的新视角: 丛枝与外生菌根树种的作用[J]. 植物生态学报, 2017, 41(10): 1113-1125. |
[13] | 王娜, 张韫, 钱文丽, 王政权, 谷加存. CO2浓度倍增对红松幼苗根尖和叶解剖结构及生理功能的影响[J]. 植物生态学报, 2016, 40(1): 60-68. |
[14] | 杨清培, 杨光耀, 宋庆妮, 施建敏, 欧阳明, 祁红艳, 方向民. 竹子扩张生态学研究: 过程、后效与机制[J]. 植物生态学报, 2015, 39(1): 110-124. |
[15] | 陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10): 1135-1153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19