植物生态学报 ›› 2025, Vol. 49 ›› Issue (3): 460-474.DOI: 10.17521/cjpe.2024.0097 cstr: 32100.14.cjpe.2024.0097
赵洪贤1, 刘鹏1,2, 史曼英3, 徐铭泽4,5, 贾昕1,2, 田赟1,2, 查天山1,2,*()
收稿日期:
2024-04-03
接受日期:
2024-08-23
出版日期:
2025-03-20
发布日期:
2024-08-26
通讯作者:
* 查天山(tianshanzha@bjfu.edu.cn)基金资助:
ZHAO Hong-Xian1, LIU Peng1,2, SHI Man-Ying3, XU Ming-Ze4,5, JIA Xin1,2, TIAN Yun1,2, ZHA Tian-Shan1,2,*()
Received:
2024-04-03
Accepted:
2024-08-23
Online:
2025-03-20
Published:
2024-08-26
Contact:
* ZHA Tian-Shan(tianshanzha@bjfu.edu.cn)Supported by:
摘要: 探究气候变化背景下物种的适应机制是植物生理生态领域研究热点, 研究半干旱区优势物种叶片氮分配对植物光合能力的影响, 有利于理解气候变化背景下荒漠植物的适应能力。该研究于2021年5-10月, 以宁夏盐池毛乌素沙地的主要建群种黑沙蒿(俗名: 油蒿, Artemisia ordosica)和赖草(Leymus secalinus)为研究对象, 通过测定黑沙蒿和赖草的光响应曲线、CO2响应曲线和叶性状参数, 计算叶片不同组分中的氮分配比例, 结合同步观测的环境数据, 探究两种固沙植物叶片氮分配相关参数对最大净光合速率(Amax)的影响。结果显示: 在观测期内, 黑沙蒿和赖草的单位质量叶片氮含量(Nmass)均值都为0.02 g·g-1, 黑沙蒿Amax和叶氮在光合系统中的分配比例(Pp)均值分别为22.44 μmol·m-2·s-1和42.9%, 赖草Amax和Pp观测期内均值分别为11.99 μmol·m-2·s-1和27.5%, 相比黑沙蒿较低。在土壤水分亏缺的生长季中期, 黑沙蒿Amax和Pp降低, 而赖草的Amax和Pp并没有明显变化。相比于赖草, 黑沙蒿Amax受叶片氮分配的影响更大, Pp和叶氮在羧化系统中的分配比例(Pc)分别是影响黑沙蒿和赖草Amax季节变异的主要叶片氮分配参数。在干旱胁迫期间, 黑沙蒿和赖草叶片Nmass均降低, 黑沙蒿叶片氮分配比例对土壤水分变化的敏感性较大, 其光合氮利用效率(PNUE)降低, 且投资更多的氮到非光合机构中来抵抗干旱, 而赖草的叶片氮分配比例和PNUE的变化相对稳定, 其Amax并没有显著下降。总之, 黑沙蒿叶片对光合系统投入的氮比例相对较高, 其光合能力在观测期内仍大于赖草。该研究表明, 不同沙地物种对其生境的适应性存在差异, 在未来干旱增加的条件下, 该区域植被可能趋于以沙地灌木黑沙蒿为主的植被群落。
赵洪贤, 刘鹏, 史曼英, 徐铭泽, 贾昕, 田赟, 查天山. 毛乌素沙地典型固沙植物黑沙蒿和赖草叶片氮分配对最大净光合速率的影响. 植物生态学报, 2025, 49(3): 460-474. DOI: 10.17521/cjpe.2024.0097
ZHAO Hong-Xian, LIU Peng, SHI Man-Ying, XU Ming-Ze, JIA Xin, TIAN Yun, ZHA Tian-Shan. Effect of leaf nitrogen allocation on maximum net photosynthetic rate of two common sand-fixing species, Artemisia ordosica and Leymus secalinus, in Mau Us Sandy Land. Chinese Journal of Plant Ecology, 2025, 49(3): 460-474. DOI: 10.17521/cjpe.2024.0097
图1 2021年研究区内环境因子日均值或日累积值变化。PPT, 降水量; REW10, 10 cm土壤相对含水量; REW30, 30 cm土壤相对含水量; SWC10, 10 cm土壤含水量; SWC30, 30 cm土壤含水量。
Fig. 1 Daily means or sums of environmental factors in the study site in 2021. PPT, precipitation; REW10, 10 cm relative extractable water content; REW30, 30 cm relative extractable water content; SWC10, 10 cm soil water content; SWC30, 30 cm soil water content.
图2 2021年毛乌素沙地黑沙蒿、赖草叶片光合参数季节动态(平均值±标准差)。图中横向参照线为各参数观测期内均值。
Fig. 2 Seasonal dynamics of leaf photosynthetic parameters in Artemisia ordosica and Leymus secalinus in Mau Us Sandy Land in 2021 (mean ± SD). The horizontal lines represent the mean values. Amax, the maximum net photosynthetic rate; gs, stomatal conductance; Jmax, maximum electron transport efficiency; Vcmax, maximum carboxylation rate.
图3 2021年毛乌素沙地黑沙蒿、赖草叶功能性状参数季节动态(平均值±标准差)。图中横向参照线为各参数观测期内均值。
Fig. 3 Seasonal dynamics of leaf functional traits of Artemisia ordosica and Leymus secalinus in Mau Us Sandy Land in 2021 (mean ± SD). The horizontal lines represent the mean values. Cc, leaf chlorophyll content; LMA, leaf mass per unit area.
图4 2021年毛乌素沙地黑沙蒿、赖草单位质量叶片氮含量和光合氮利用效率季节动态(平均值±标准差)。横向参照线为各参数观测期内均值, B中黑色虚线是赖草叶片氮利用效率的趋势拟合线。
Fig. 4 Seasonal dynamics of leaf nitrogen content per unit mass (Nmass) and photosynthetic nitrogen use efficiency (PNUE) of Artemisia ordosica and Leymus secalinus in Mau Us Sandy Land in 2021 (mean ± SD). The horizontal lines represent the mean values. The black dashed line in B is a trend-fit line for PNUE of L. secalinus.
图5 2021年毛乌素沙地黑沙蒿、赖草叶片氮分配参数季节动态(平均值±标准差)。横向参照线为各参数观测期内均值。
Fig. 5 Seasonal dynamics of leaf nitrogen allocation parameters of Artemisia ordosica and Leymus secalinus in Mau Us Sandy Land in 2021 (mean ± SD). The horizontal lines represent the mean values. Pc, nitrogen distribution in carboxylation system; Pb, nitrogen distribution in bioenergy system; PL, nitrogen distribution in light capture system; Pp, distribution proportion of leaf nitrogen in photosynthetic system.
图6 2021年毛乌素沙地黑沙蒿(A)、赖草(B)生长季内叶片氮分配比例。Pc, 叶片氮在羧化系统中的分配比例; Pb, 叶片氮在补光系统中的分配比例; PL, 叶片氮在生物力能系统中的分配比例; P1-p, 叶片氮在非光合系统中的分配比例。
Fig. 6 Proportion of leaf nitrogen allocation of of Artemisia ordosica (A) and Leymus secalinus (B) in Mau Us Sandy Land in 2021. Pc, nitrogen distribution in carboxylation system; Pb, nitrogen distribution in bioenergy system; PL, nitrogen distribution in light capture system; P1-p, distribution proportion of leaf nitrogen in non-photosynthetic system.
图7 2021年毛乌素沙地黑沙蒿、赖草生长季内最大净光合速率与叶片氮含量相关参数的相关关系。Amax, 最大净光合速率; Nmass, 单位质量叶片氮含量; Pb, 叶片氮在补光系统中的分配比例; Pc, 叶片氮在羧化系统中的分配比例; PL, 叶片氮在生物力能系统中的分配比例; PNUE, 光合氮利用效率; Pp, 叶片氮在光合系统中的分配比例。*, p ≤0.05; **, p ≤ 0.01。圆圈大小表示相关系数的绝对值大小, 颜色表示相关系数的正负。
Fig. 7 Correlations between the maximum net photosynthetic rate and parameters related to leaf nitrogen content of Artemisia ordosica and Leymus secalinus in Mau Us Sandy Land in 2021. Amax, the maximum net photosynthetic rate; Nmass, nitrogen content of leaf per unit mass; Pb, leaf nitrogen distribution in bioenergy system; Pc, leaf nitrogen distribution in carboxylation system; PL, leaf nitrogen distribution in light capture system; PNUE, photosynthetic nitrogen use efficiency; Pp, distribution proportion of leaf nitrogen in photosynthetic system. *, p ≤ 0.05; **, p ≤ 0.01. The circle size represents the absolute magnitude of the correlation coefficient, while the color indicates its direction (positive/negative).
图8 2021年毛乌素沙地黑沙蒿、赖草生长季内叶片氮分配参数影响最大净光合速率季节变化的SHAP值。Pb, 叶片氮在捕光系统中的分配比例; Pc, 叶片氮在羧化系统中的分配比例; PL, 叶片氮在生物力能系统中的分配比例; Pp, 叶片氮在光合系统中的分配比例。
Fig. 8 The SHAP values of leaf nitrogen allocation parameters affecting the seasonal variation of the maximum net photosynthetic rate of Artemisia ordosica and Leymus secalinus in Mau Us Sandy Land in 2021. Pb, nitrogen distribution in bioenergy system; Pc, nitrogen distribution in carboxylation system; PL, nitrogen distribution in light capture system; Pp, distribution proportion of leaf nitrogen in photosynthetic system.
自变量 Independent variable | 间接通径系数 Indirect path coefficient |
---|---|
氮在生物力能学组分中的比例 Pp | 0.38 (Pp→Pc→Amax) |
0.43 (Pp→Pb→Amax) | |
氮在生物力能学组分中的比例 Pb | 0.34 (Pb→Pc→Amax) |
氮在羧化系统中的比例 Pc | 0.41 (Pc→Pb→Amax) |
氮在捕光系统中分配比例 PL | 0.20 (PL→Pb→Amax) |
表1 叶片氮分配参数对黑沙蒿最大净光合速率的间接通径系数
Table 1 Indirect path coefficients of nitrogen allocation factors on the maximum net photosynthetic rate (Amax) of Artemisia ordosica and Leymus secalinus
自变量 Independent variable | 间接通径系数 Indirect path coefficient |
---|---|
氮在生物力能学组分中的比例 Pp | 0.38 (Pp→Pc→Amax) |
0.43 (Pp→Pb→Amax) | |
氮在生物力能学组分中的比例 Pb | 0.34 (Pb→Pc→Amax) |
氮在羧化系统中的比例 Pc | 0.41 (Pc→Pb→Amax) |
氮在捕光系统中分配比例 PL | 0.20 (PL→Pb→Amax) |
图9 2021年毛乌素沙地黑沙蒿和赖草最大净光合速率、叶片氮含量及叶片氮分配参数与10 cm土壤含水量的关系。阴影部分为95%置信区间。
Fig. 9 Relationships between the maximum net photosynthetic rate (Amax), nitrogen content of leaf per unit mass (Nmass), distribution proportion of leaf nitrogen in photosynthetic system (Pp), photosynthetic nitrogen use efficiency (PNUE) and soil water content at 10 cm depth (SWC10) of Artemisia ordosica and Leymus secalinus in Mau Us Sandy Land in 2021. The shaded area represents the 95% confidence interval.
[1] | Akram MA, Wang X, Shrestha N, Zhang YH, Sun Y, Yao S, Li JH, Hou QQ, Hu WG, Ran JZ (2023). Variations and driving factors of leaf functional traits in the dominant desert plant species along an environmental gradient in the drylands of China. Science of the Total Environment, 897, 165394. DOI: 10.1016/j.scitotenv.2023.165394. |
[2] | Ali AA, Xu C, Rogers A, Fisher RA, Wullschleger SD, Massoud EC, Vrugt JA, Muss JD, McDowell NG, Fisher JB, Reich PB, Wilson CJ (2016). A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geoscientific Model Development, 9, 587-606. |
[3] | Bao PA, Qiu KY, Huang YY, Liu WS, Cui LY, Wang SY, Yang Y, Xie YZ (2023). Effects of nitrogen and phosphorus additions on litter decomposition characteristics of two grass species in Stipa breviflora desert steppe. Chinese Journal of Grassland, 45(9), 66-76. |
[鲍平安, 邱开阳, 黄业芸, 刘王锁, 崔璐瑶, 王思瑶, 杨壹, 谢应忠 (2023). 氮磷添加对短花针茅荒漠草原两种禾草凋落物分解特征的影响. 中国草地学报, 45(9), 66-76.] | |
[4] |
Biederman JA, Scott RL, Bell TW, Bowling DR, Dore S, Garatuza-Payan J, Kolb TE, Krishnan P, Krofcheck DJ, Litvak ME, Maurer GE, Meyers TP, Oechel WC, Papuga SA, Ponce-Campos GE, et al.(2017). CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Global Change Biology, 23, 4204-4221.
DOI PMID |
[5] | Byeon S, Song W, Park M, Kim S, Lee H, Jeon J, Kim K, Lee MS, Lim H, Han SH, Oh C, Kim SH (2021). Down-regulation of photosynthesis and its relationship with changes in leaf N allocation and N availability after long-term exposure to elevated CO2 concentration. Journal of Plant Physiology, 265, 153489. DOI: 10.1016/j.jplph.2021.153489. |
[6] | Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002). How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany, 89, 907-916. |
[7] | Chen GY, Chen J, Xu DQ (2010). Thinking about the relationship between net photosynthetic rate and intercellular CO2 concentration. Plant Physiology Journal, 46(1), 64-66. |
[陈根云, 陈娟, 许大全 (2010). 关于净光合速率和胞间CO2浓度关系的思考. 植物生理学通讯, 46(1), 64-66.] | |
[8] | Chen TQ, Xu GQ, Liu SS, Li Y (2023). Hydraulic traits adjustments and nonstructural carbohydrate dynamics of Haloxylon ammodendron under drought stress. Chinese Journal of Plant Ecology, 47, 1407-1421. |
[陈图强, 徐贵青, 刘深思, 李彦 (2023). 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态. 植物生态学报, 47, 1407-1421.]
DOI |
|
[9] | Chen ZH, Guo JB, Zha TS, Qin SG, Tang SL, Jia X (2014). Seasonal variation and water response of leaf nitrogen content for three psammophytic shrub species. Journal of Arid Land Resources and Environment, 28(6), 63-67. |
[陈志豪, 郭建斌, 查天山, 秦树高, 唐思凌, 贾昕 (2014). 三种沙生灌木叶片含氮量的季节变化及其水分响应. 干旱区资源与环境, 28(6), 63-67.] | |
[10] | Cowan T, Undorf S, Hegerl GC, Harrington LJ, Otto FEL (2020). Present-day greenhouse gases could cause more frequent and longer Dust Bowl heatwaves. Nature Climate Change, 10, 505-510. |
[11] |
Ding L, Lu ZF, Gao LM, Guo SW, Shen QR (2018). Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Frontiers in Plant Science, 9, 1143. DOI: 10.3389/fpls.2018.01143.
PMID |
[12] | Duursma RA (2015). Plantecophys—An R package for analysing and modelling leaf gas exchange data. PLoS ONE, 10, e0143346. DOI: 10.1371/journal.pone.0143346. |
[13] | Fan JZ, Wang D, Hu YL, Jing PP, Wang PP, Chen JQ (2016). Optimal stomatal behavior theory for simulating stomatal conductance. Chinese Journal of Plant Ecology, 40, 631-642. |
[范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉 (2016). 最优气孔行为理论和气孔导度模拟. 植物生态学报, 40, 631-642.]
DOI |
|
[14] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI PMID |
[15] | Feng XF, Lei CY, Zhang YJ, Xiang D, Yang MF, Zhang WF, Zhang YL (2023). Effect of leaf nitrogen allocation on photosynthetic nitrogen use efficiency at flowering and boll stage of Gossypium spp. Chinese Journal of Plant Ecology, 47, 1600-1610. |
[冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎 (2023). 棉花花铃期叶片氮分配对光合氮利用效率的影响. 植物生态学报, 47, 1600-1610.]
DOI |
|
[16] | Feng YL, Lei YB, Wang RF, Callaway RM, Valiente-Banuet A, Inderjit, Li YP, Zheng YL (2009). Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 106, 1853-1856. |
[17] | Funk JL, Glenwinkel LA, Sack L (2013). Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species. PLoS ONE, 8, e64502. DOI: 10.1371/journal.pone.0064502. |
[18] | Hao SR, Jia X, Mu YM, Zha TS, Qin SG, Liu P, Tian Y, Qi JD, Zhao HX, Li XH (2023). Canopy greenness, atmospheric aridity, and large rain events jointly regulate evapotranspiration partitioning in a temperate semiarid shrubland. Agricultural and Forest Meteorology, 333, 109425. DOI: 10.1016/j.agrformet.2023.109425. |
[19] | Hu WS, Zhao ML, Zhang SS, Li YS, Dai J, Gu CM, Li XY, Yang L, Qin L, Liao X (2023). Optimized leaf storage and photosynthetic nitrogen trade-off promote synergistic increases in photosynthetic rate and photosynthetic nitrogen use efficiency. Physiologia Plantarum, 175, e14013. DOI: 10.1111/ppl.14013. |
[20] | Huang TF, Jander G (2017). Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana. Planta, 246, 737-747. |
[21] | Jiang Y, Jin C, Jiang XY, Li XH, Wei NN, Gao SJ, Liu P, Jia X, Zha TS (2022). Relative changes and biophysical controls of leaf resource use efficiencies in Artemisia ordosica. Acta Ecologica Sinica, 42, 6196-6208. |
[蒋燕, 靳川, 姜晓燕, 李鑫豪, 魏宁宁, 高圣杰, 刘鹏, 贾昕, 查天山 (2022). 油蒿叶片资源利用效率变化及其生物与非生物影响因素. 生态学报, 42, 6196-6208.] | |
[22] | Jiang Y, Tian Y, Zha TS, Jia X, Bourque CPA, Liu P, Jin C, Jiang XY, Li XH, Wei NN, Gao SJ (2021). Dynamic changes in plant resource use efficiencies and their primary influence mechanisms in a typical desert shrub community. Forests, 12, 1372. DOI:10.3390/f12101372. |
[23] | Li XH, Yan HJ, Wei TZ, Zhou WJ, Jia X, Zha TS (2019). Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season. Chinese Journal of Plant Ecology, 43, 889-898. |
[李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山 (2019). 油蒿资源利用效率在生长季的相对变化及对环境因子的响应. 植物生态学报, 43, 889-898.]
DOI |
|
[24] | Liu M, Liu XC, Zhao Y, Korpelainen H, Li CY (2022). Sex-specific nitrogen allocation tradeoffs in the leaves of Populus cathayana cuttings under salt and drought stress. Plant Physiology and Biochemistry, 172, 101-110. |
[25] | Liu Y, Zhang LN, Liu XH, Zeng XM, Jia RX (2023). Research progress from individual plant physiological response to ecological model prediction under drought stress. Acta Ecologica Sinica, 43, 10042-10053. |
[刘燕, 张凌楠, 刘晓宏, 曾小敏, 贾瑞萱 (2023). 干旱胁迫植物个体生理响应及其生态模型预测研究进展. 生态学报, 43, 10042-10053.] | |
[26] |
Luo XZ, Keenan TF, Chen JM, Croft H, Colin Prentice I, Smith NG, Walker AP, Wang H, Wang R, Xu CG, Zhang Y (2021). Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nature Communications, 12, 4866. DOI:10.1038/s41467-021-25163-9.
PMID |
[27] | Ma JY, Jia X, Zha TS, Bourque CPA, Tian Y, Bai YJ, Liu P, Yang RZ, Li C, Li CY, Xie J, Yu HQ, Zhang F, Zhou CX (2019). Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought. Agricultural and Forest Meteorology, 275, 1-10. |
[28] | Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D (2002). Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell & Environment, 25, 1167-1179. |
[29] | Moon M, Kang KS, Park IK, Kim T, Kim HS (2015). Effects of leaf nitrogen allocation on the photosynthetic nitrogen-use efficiency of seedlings of three tropical species in Indonesia. Journal of the Korean Society for Applied Biological Chemistry, 58, 511-519. |
[30] |
Mu XH, Chen QW, Chen FJ, Yuan LX, Mi GH (2016). Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Frontiers in Plant Science, 7, 699. DOI: 10.3389/fpls.2016.00699.
PMID |
[31] | Mu YM, Yuan Y, Jia X, Zha TS, Qin SG, Ye ZQ, Liu P, Yang RZ, Tian Y (2022). Hydrological losses and soil moisture carryover affected the relationship between evapotranspiration and rainfall in a temperate semiarid shrubland. Agricultural and Forest Meteorology, 315, 108831. DOI: 10.1016/j.agrformet.2022.108831. |
[32] | Niinemets Ü, Tenhunen JD (1997). A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell & Environment, 20, 845-866. |
[33] | Onoda Y, Hikosaka K, Hirose T (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 18, 419-425. |
[34] | Park M, Cho S, Park J, Lee H, Song W, Park IK, Kim HS (2019). Size-dependent variation in leaf functional traits and nitrogen allocation trade-offs in Robinia pseudoacacia and Cornus controversa. Tree Physiology, 39, 755-766. |
[35] | Qing H, Cai Y, Xiao Y, Yao YH, An SQ (2012). Leaf nitrogen partition between photosynthesis and structural defense in invasive and native tall form Spartina alterniflora populations: effects of nitrogen treatments. Biological Invasions, 14, 2039-2048. |
[36] | Quebbeman JA, Ramirez JA (2016). Optimal allocation of leaf-level nitrogen: implications for covariation of Vcmax and Jmax and photosynthetic downregulation. Journal of Geophysical Research: Biogeosciences, 121, 2464-2475. |
[37] | Reich PB, Sendall KM, Stefanski A, Rich RL, Hobbie SE, Montgomery RA (2018). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562, 263-267. |
[38] | Rodell M, Li BL (2023). Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nature Water, 1, 241-248. |
[39] |
Schimel DS (2010). Drylands in the earth system. Science, 327, 418-419.
DOI PMID |
[40] | Shi ZM, Tang JC, Cheng RM, Luo D, Liu SR (2015). A review of nitrogen allocation in leaves and factors in its effects. Acta Ecologica Sinica, 35, 5909-5919. |
[史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣 (2015). 植物叶片氮分配及其影响因子研究进展. 生态学报, 35, 5909-5919.] | |
[41] | Simonin KA, Limm EB, Dawson TE (2012). Hydraulic conductance of leaves correlates with leaf lifespan: implications for lifetime carbon gain. New Phytologist, 193, 939-947. |
[42] | Song JX, Zhou S, Yu BF, Li Y, Liu YX, Yao Y, Wang S, Fu BJ (2024). Serious underestimation of reduced carbon uptake due to vegetation compound droughts. NPJ Climate and Atmospheric Science, 7, 23. DOI: 10.1038/s41612-024-00571-y. |
[43] | Takashima T, Hikosaka K, Hirose T (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment, 27, 1047-1054. |
[44] | Tateno R, Kawaguchi H (2002). Differences in nitrogen use efficiency between leaves from canopy and subcanopy trees. Ecological Research, 17, 695-704. |
[45] | Trouwborst G, Hogewoning SW, Harbinson J, van Ieperen W (2011). Photosynthetic acclimation in relation to nitrogen allocation in cucumber leaves in response to changes in irradiance. Physiologia Plantarum, 142, 157-169. |
[46] | van Ommen Kloeke AEE, Douma JC, Ordoñez JC, Reich PB, van Bodegom PM (2012). Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21, 224-235. |
[47] | Wei XW, Yang YH, Yao JL, Han JY, Yan M, Zhang JW, Shi YJ, Wang JF, Mu CS (2022). Improved utilization of nitrate nitrogen through within-leaf nitrogen allocation trade-offs in Leymus chinensis. Frontiers in Plant Science, 13, 870681. DOI: 10.3389/fpls.2022.870681. |
[48] | Werner C, Correia O, Beyschlag W (1999). Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecologica, 20, 15-23. |
[49] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485-496.
DOI PMID |
[50] | Xiao CW, Zhou GS, Ma FY (2002). Effects of water application on morphology and growth of dominant plants in Mu Us Sandy Land. Acta Phytoecologica Sinica, 26, 69-76. |
[肖春旺, 周广胜, 马风云 (2002). 施水量变化对毛乌素沙地优势植物形态与生长的影响. 植物生态学报, 26, 69-76.] | |
[51] | Xu MZ, Liu P, Tian Y, Zhao HX, Jin C, Li ML, Mao J, Wei XS, Jia X, Zha TS (2023). Seasonal response of light use efficiency of Artemisia ordosica to leaf traits in Mu Us sandy land. Acta Ecologica Sinica, 43, 5122-5136. |
[徐铭泽, 刘鹏, 田赟, 赵洪贤, 靳川, 李满乐, 毛军, 魏晓帅, 贾昕, 查天山 (2023). 毛乌素沙地油蒿叶性状对光能利用效率动态的影响. 生态学报, 43, 5122-5136.] | |
[52] | Yan S, Zhang L, Jing YS, He HL, Yu GR (2014). Variability of the relationship between maximum carboxylation rate of plant leaves and leaf nitrogen content. Chinese Journal of Plant Ecology, 38, 640-652. |
[闫霜, 张黎, 景元书, 何洪林, 于贵瑞 (2014). 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 38, 640-652.]
DOI |
|
[53] | Yang W, Sun JY, Wang JM, Xue YY (2019). Rejuvenation technology of degraded aerial sowing shrubs in Mu Us sandy land of Yulin desert area. Protection Forest Science and Technology, (2), 1-2. |
[杨伟, 孙婧瑜, 王建梅, 薛园园 (2019). 毛乌素沙地榆林沙区退化飞播灌木林平茬复壮效果分析. 防护林科技, (2), 1-2.] | |
[54] | Ye ZP (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34, 727-740. |
[叶子飘 (2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 727-740.]
DOI |
|
[55] | Ye ZP, Suggett DJ, Robakowski P, Kang HJ (2013). A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytologist, 199, 110-120. |
[56] | Ye ZP, Yu Q (2007). Comparison of a new model of light response of photosynthesis with traditional models. Journal of Shenyang Agricultural University, 38, 771-775. |
[叶子飘, 于强 (2007). 一个光合作用光响应新模型与传统模型的比较. 沈阳农业大学学报, 38, 771-775.] | |
[57] | Ye ZP, Yu Q (2008). A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica, 46, 637-640. |
[58] | Yu XJ, Zhang LX, Zhou TJ, Zheng JH (2024). Assessing the performance of CMIP6 models in simulating droughts across global drylands. Advances in Atmospheric Sciences, 41, 193-208. |
[59] |
Yuan Y, Mu YM, Deng YJ, Li XH, Jiang XY, Gao SJ, Zha TS, Jia X (2022). Effects of vegetation coverage and phenological changes on total primary productivity of typical Artemisia nigra shrub ecosystem. Chinese Journal of Plant Ecology, 46, 162-175.
DOI |
[原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕 (2022). 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响. 植物生态学报, 46, 162-175.]
DOI |
|
[60] | Zhao HX, Zhang YJ, Xu MZ, Wei TZ, Mao J, Luo Y, Jia X, Zha TS (2022). Effects of leaf nitrogen allocation on seasonal variation in maximum net photosynthetic rate in Artemisia ordosica. Acta Ecologica Sinica, 42, 7156-7166. |
[赵洪贤, 张洋军, 徐铭泽, 卫腾宙, 毛军, 雒宇, 贾昕, 查天山 (2022). 油蒿叶片氮分配对其最大净光合速率季节变异的影响. 生态学报, 42, 7156-7166.] | |
[61] | Zheng HL, Huang ZC, Dong XJ (1992). Physiological and ecological study of Artemisia ulgensis and Caryophyllum borealis in Mu Us Sandy Land. Acta Phytoecologica et Geobotanica Sinica, 16, 197-208. |
[郑海雷, 黄子琛, 董学军 (1992). 毛乌素沙地油蒿和牛心朴子生理生态学研究. 植物生态学与地植物学学报, 16, 197-208.] | |
[62] |
Zhong C, Jian SF, Huang J, Jin QY, Cao XC (2019). Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 135, 41-50.
DOI PMID |
[63] | Zhou YJ, Li X, Chen GY (2023). Research progress in plant Rubisco. Scientia Sinica (Vitae), 53, 1213-1229. |
[周昱婕, 李霞, 陈根云 (2023). 植物Rubisco研究进展. 中国科学: 生命科学, 53, 1213-1229.] | |
[64] | Zhuang J, Zhou L, Wang YL, Chi YG (2021). Nitrogen allocation regulates the relationship between maximum carboxylation rate and chlorophyll content along the vertical gradient of subtropical forest canopy. Agricultural and Forest Meteorology, 307, 108512. DOI: 10.1016/j.agrformet.2021.108512. |
[65] | Zhuo H, Liu XY, Luo S, Ou XX, Rong XM, Yang L, Li Q, Han YL (2024). Physiological changes underlying increased photosynthetic-nitrogen use efficiency in response to low-nitrogen conditions in Brassica napus L. Industrial Crops and Products, 211, 118240. DOI: 10.1016/j.indcrop.2024.118240. |
[1] | 苗春, 刘靓, 朱冠男, 白宇轩, 佘维维, 秦树高, 郭焱培, 张宇清. 毛乌素沙地黑沙蒿对邻近草本植物氮吸收速率及比例的影响[J]. 植物生态学报, 2025, 49(3): 446-459. |
[2] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[3] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[4] | 徐铭泽, 赵洪贤, 李成, 李满乐, 田赟, 刘鹏, 查天山. 季节尺度毛乌素沙地黑沙蒿的叶片性状网络特征及驱动因素[J]. 植物生态学报, 2024, 48(12): 1650-1665. |
[5] | 马斌, 佘维维, 秦欢, 宣瑞智, 宋春阳, 袁新月, 苗春, 刘靓, 冯薇, 秦树高, 张宇清. 氮水添加对黑沙蒿种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
[6] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[7] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[8] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[9] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[10] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[11] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[12] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[13] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[14] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[15] | 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11): 1189-1207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19