植物生态学报 ›› 2025, Vol. 49 ›› Issue (7): 1110-1118.DOI: 10.17521/cjpe.2024.0216 cstr: 32100.14.cjpe.2024.0216
收稿日期:
2024-07-04
接受日期:
2024-10-09
出版日期:
2025-07-20
发布日期:
2024-10-11
通讯作者:
*刘琪璟, E-mail: liuqijing@bjfu.edu.cn基金资助:
LI Gang-Dun, QIAN Ni-Peng, WANG Lin-Xu, DONG Chun-Chao, LIU Qi-Jing*()
Received:
2024-07-04
Accepted:
2024-10-09
Online:
2025-07-20
Published:
2024-10-11
Supported by:
摘要: 基于微树芯法的树木年内径向生长监测能够获得高分辨率和动态化的树木生长信息, 对理解气候变化背景下树木的响应机制有切实意义。该研究使用微树芯法, 监测了长白山阔叶红松林中红松(Pinus koraiensis)和春榆(Ulmus davidiana var. japonica)的径向生长动态, 结果发现: 1)春榆扩大细胞发生时间(年序日) (DOY 116.0 ± 4.70)早于红松(DOY 125.0 ± 2.64), 两个树种扩大细胞的变化趋势一致, 均为先增加后减少; 2)红松最大生长速率发生时间早于春榆, 但春榆生长持续时间长于红松, 红松的木质部平均生长速率为3.4 μm·d-1, 最大速率为9.4 μm·d-1, 而春榆分别为11.0和23.0 μm·d-1; 3)红松与春榆对环境因子的响应趋势高度一致, 但春榆对于环境因子的响应强度低于红松。两个树种径向生长总长度与平均气温、最高气温、最低气温、相对湿度、土壤温度显著正相关, 与光合有效辐射、 饱和水汽压差显著负相关, 与土壤含水量和降水量无显著相关性。温度是影响红松与春榆年内径向生长的主要环境因子, 与此相关的土壤温度是关键因子。
李港墩, 钱尼澎, 王林旭, 董淳超, 刘琪璟. 长白山红松和春榆径向生长季节动态对环境因子的响应. 植物生态学报, 2025, 49(7): 1110-1118. DOI: 10.17521/cjpe.2024.0216
LI Gang-Dun, QIAN Ni-Peng, WANG Lin-Xu, DONG Chun-Chao, LIU Qi-Jing. Seasonal dynamics of radial growth of Pinus koraiensis and Ulmus davidiana var. japonica are related to environmental factors in Changbai Mountain, China. Chinese Journal of Plant Ecology, 2025, 49(7): 1110-1118. DOI: 10.17521/cjpe.2024.0216
图1 长白山阔叶红松林观测点气候季节进程。
Fig. 1 Seasonal process of climate at the observation site in the mixed broadleaf-Korean pine forest. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative humidity; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; ST, soil temperature; VPD, vapor pressure deficit.
图2 长白山阔叶红松林2023年红松和春榆木质部细胞分化季节动态(平均值±标准差)。
Fig. 2 Seasonal patterns of xylem-cell differentiation for Pinus koraiensis and Ulmus davidiana var. japonica in 2023 in the mixed broadleaf-Korean pine forest of Changbai Mountain (mean ± SD).
树种 Species | 扩大阶段 Enlargement stage | 壁增厚阶段 Wall-thickening stage | 成熟阶段 Lignification stage | 生长季持续时间 Duration of growing season (d) | |||
---|---|---|---|---|---|---|---|
开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | ||
红松 P. koraiensis | 125 ± 2.6 | 238 ± 2.3 | 143 ± 2.5 | 245 ± 5.1 | 161 ± 6.2 | 250 ± 4.2 | 125 ± 2.0 |
春榆 U. davidiana var. japonica | 116 ± 4.7 | 241 ± 5.4 | 130 ± 7.6 | 246 ± 6.4 | 133 ± 2.0 | 270 ± 3.0 | 154 ± 2.0 |
表1 红松和春榆不同阶段细胞发生时间和持续时间(平均值±标准差)
Table 1 Timing and duration of cell occurrence at different stages of Pinus koraiensis and Ulmus davidiana var. japonica in the mixed broadleaf-Korean pine forest of Changbai Mountain (mean ± SD)
树种 Species | 扩大阶段 Enlargement stage | 壁增厚阶段 Wall-thickening stage | 成熟阶段 Lignification stage | 生长季持续时间 Duration of growing season (d) | |||
---|---|---|---|---|---|---|---|
开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | 开始 Onset (DOY) | 结束 End (DOY) | ||
红松 P. koraiensis | 125 ± 2.6 | 238 ± 2.3 | 143 ± 2.5 | 245 ± 5.1 | 161 ± 6.2 | 250 ± 4.2 | 125 ± 2.0 |
春榆 U. davidiana var. japonica | 116 ± 4.7 | 241 ± 5.4 | 130 ± 7.6 | 246 ± 6.4 | 133 ± 2.0 | 270 ± 3.0 | 154 ± 2.0 |
图3 红松和春榆木质部累积生长和生长速率季节动态。点表示红松(P1-P8)和春榆(U1-U8)各样木的径向生长总长度; A, B中曲线为各样树的Gompertz模型拟合曲线, C, D为日生长速率曲线。
Fig. 3 Seasonal dynamics of accumulated growth and growth rate in xylem of P. koraiensis and U. davidiana var. japonica. Dots represent the total radial growth length for each species; curves in A and B are Gompertz model fitting curves for each tree species, while C and D represent the daily growth rate curves.
图4 红松(Pk)、春榆(Uj)径向生长总长度与环境因子的关系。PAR, 光合有效辐射; Pre, 降水量; RH, 相对湿度; SWC, 土壤含水量; Tmax, 最高气温; Tmean, 平均气温; Tmin, 最低气温; ST, 土壤温度; VPD, 饱和水汽压差。
Fig. 4 Relationship between radial growth of Pinus koraiensis (Pk) and Ulmus davidiana var. japonica (Uj) and environmental factors. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative humidity; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; ST, soil temperature; VPD, vapor pressure deficit.
[1] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. |
[2] | Aloni R (2015). Ecophysiological implications of vascular differentiation and plant evolution. Trees, 29, 1-16. |
[3] | Aloni R, Alexander JD, Tyree MT (1997). Natural and experimentally altered hydraulic architecture of branch junctions in Acer saccharum Marsh. and Quercus velutina Lam. trees. Trees, 11, 255-264. |
[4] | Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004). Responses of spring phenology to climate change. New Phytologist, 162, 295-309. |
[5] | Bontemps JD, Herve JC, Duplat P, Dhôte JF (2012). Shifts in the height-related competitiveness of tree species following recent climate warming and implications for tree community composition: the case of common beech and sessile oak as predominant broadleaved species in Europe. Oikos, 121, 1287-1299. |
[6] | Carrillo-Arizmendi L, Vargas-Hernández JJ, Rozenberg P, Pérez-Suárez M, Martínez-Campos AR (2023). Phenotypic plasticity of growth ring traits in Pinus hartwegii at the ends of its elevational gradient. Frontiers in Plant Science, 14, 1072638. DOI: 10.3389/fpls.2023.1072638. |
[7] | Deslauriers A, Fonti P, Rossi S, Rathgeber CBK, Gričar J (2017). Ecophysiology and plasticity of wood and phloem formation//Amoroso MM, Daniels LD, Baker PJ, Camarero JJ. Dendroecology: Tree-Ring Analyses Applied to Ecological Studies. Springer, Cham. 13-33. |
[8] | Ford KR, Harrington CA, St Clair JB (2017). Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species’ range: modeling diameter-growth cessation in coast Douglas-fir. Global Change Biology, 23, 3348-3362. |
[9] |
Franceschi VR, Krokene P, Krekling T, Christiansen E (2000). Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). American Journal of Botany, 87, 314-326.
PMID |
[10] | Gričar J, Lavrič M, Ferlan M, Vodnik D, Eler K (2017). Intra-annual leaf phenology, radial growth and structure of xylem and phloem in different tree parts of Quercus pubescens. European Journal of Forest Research, 136, 625-637. |
[11] | Gruber A, Zimmermann J, Wieser G, Oberhuber W (2009). Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone. Annals of Forest Science, 66, 1-11. |
[12] | Guo BD, Zhong R, Zhang YM, Xu J, Luan ZP (2023). Response of the radial growth of Picea koraiensis to climate change in the Xiaoxing’an Mountains. Journal of Temperate Forestry Research, 6(4), 31-34. |
[郭滨德, 钟瑞, 张耀明, 徐静, 栾兆平 (2023). 小兴安岭红皮云杉径向生长对气候变化的响应. 温带林业研究, 6(4), 31-34.] | |
[13] | Hosseinzadehtalaei P, Termonia P, Tabari H (2024). Projected changes in compound hot-dry events depend on the dry indicator considered. Communications Earth & Environment, 5, 220. DOI: 10.1038/s43247-024-01352-4. |
[14] | Hoch G, Richter A, Körner C (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 26, 1067-1081. |
[15] | Huang JG, Guo XL, Rossi S, Zhai LH, Yu BY, Zhang SK, Zhang MF (2018). Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. Tree Physiology, 38, 1225-1236. |
[16] | Jin MY, Li JJ, Che ZX, Wang F, Zhang JZ, Gou XH (2020). Intra-annual radial growth responses of Qilian juniper (Juniperus przewalskii) to climate factors in the central Qilian Mountains, Northwest China. Acta Ecologica Sinica, 40, 7699-7708. |
[金敏艳, 李进军, 车宗玺, 王放, 张军周, 勾晓华 (2020). 祁连山中部祁连圆柏年内径向生长对气候因子的响应. 生态学报, 40, 7699-7708.] | |
[17] | Li JQ, Li JW (2003). Regeneration and restoration of broad-leaved Korean pine forests in Lesser Xing’an Mountains of Northeast China. Acta Ecologica Sinica, 23, 1268-1277. |
[李俊清, 李景文 (2003). 中国东北小兴安岭阔叶红松林更新及其恢复研究. 生态学报, 23, 1268-1277.] | |
[18] | Li TT, Ji LZ, Yu DP, Zhou L, Zhou WM, Mao YX, Dai LM (2019). Forest community classification, ordination, and comparison of species diversity in broadleaved-Korean pine mixed forests of Northeast China. Acta Ecologica Sinica, 39, 620-628. |
[李婷婷, 姬兰柱, 于大炮, 周莉, 周旺明, 毛沂新, 代力民 (2019). 东北阔叶红松林群落分类、排序及物种多样性比较. 生态学报, 39, 620-628.] | |
[19] | Liu KX, Zhang TW, Zhang RB, Yu SL, Huang LP, Jiang SX, Hu DY (2022). Characteristics of radial growth at different trunk heights of Picea schrenkiana and its climate response in the mountainous area of the Ili region. Arid Land Geography, 45, 1010-1021. |
[刘可祥, 张同文, 张瑞波, 喻树龙, 黄力平, 姜盛夏, 胡东宇 (2022). 伊犁山区雪岭云杉(Picea schrenkiana)不同树干高度树木径向生长特征及其对气候响应. 干旱区地理, 45, 1010-1021.]
DOI |
|
[20] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[21] | Meng SW, Fu XL, Zhao B, Dai XQ, Li QK, Yang FT, Kou L, Wang HM (2021). Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees, 35, 1817-1830. |
[22] | Qian NP, Gao HX, Xu ZZ, Song CJ, Dong CC, Zeng W, Sun Z, Liu QJ (2023). Cambial phenology and wood formation of Korean pine in response to climate change in Changbai Mountain, Northeast China. Dendrochronologia, 77, 126045. DOI: 10.1016/j.dendro.2022.126045. |
[23] | Qian NP, Xu ZZ, Gao HX, Song CJ, Dong CC, Hu B, Liu QJ (2024). Linkages between intra-annual radial growth and photosynthetic production of four main species in a temperate forest in Northeast China. Agricultural and Forest Meteorology, 345, 109866. DOI: 10.1016/j.agrformet.2023.109866. |
[24] | Qin LH (2021). Leaf Litter Decomposition Characteristics in Mixed-broadleaved Korean Pine Forest in Changbai Mountain. PhD dissertation, Beijing Forestry University, Beijing. |
[秦立厚 (2021). 长白山阔叶红松林凋落叶分解特性研究. 博士学位论文, 北京林业大学, 北京.] | |
[25] |
Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang JG, Jyske T, Kašpar J, King G, Krause C, Liang EY, et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22, 3804-3813.
DOI PMID |
[26] |
Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170, 301-310.
DOI PMID |
[27] | Rossi S, Deslauriers A, Griçar J, Seo JW, Rathgeber CB, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17, 696-707. |
[28] |
Rossi S, Morin H, Deslauriers A (2012). Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. Journal of Experimental Botany, 63, 2117-2126.
DOI PMID |
[29] | Seo JW, Salminen H, Jalkanen R, Eckstein D (2010). Chronological coherence between infra-annual height and radial growth of Scots pine (Pinus sylvestris L.) in the Northern Boreal Zone of Finland. Baltic Forestry, 16, 57-65. |
[30] |
Wang H, Shao XM, Fang XQ, Yin ZY, Chen L, Zhao DS, Wu SH (2011). Responses of Pinus koraiensis tree ring cell scale parameters to climate elements in Changbai Mountains. Chinese Journal of Applied Ecology, 22, 2643-2652.
PMID |
[王辉, 邵雪梅, 方修琦, 尹志勇, 陈力, 赵东升, 吴绍洪 (2011). 长白山红松年轮细胞尺度参数对气候要素的响应. 应用生态学报, 22, 2643-2652.] | |
[31] | Wang LL (2023). Annual Radial Growth of Three Coniferous Species in Eastern Qilian Mountains and Their Responses to Climatic Factors. Master degree dissertation, Lanzhou University, Lanzhou. |
[王玲玲 (2023). 祁连山东部三个针叶树种年内径向生长及其对气候要素的响应. 硕士学位论文, 兰州大学, 兰州.] | |
[32] |
Wang YT, Zhang JZ, Liu JJ, Wang LJ, Li YL (2024). Research progress on cambium activity and radial growth dynamics monitoring of coniferous species. Chinese Journal of Applied Ecology, 35, 1223-1232.
DOI |
[王悦桐, 张军周, 刘俊俊, 王丽娟, 李玉麟 (2024). 针叶树形成层活动及径向生长监测研究进展. 应用生态学报, 35, 1223-1232.]
DOI |
|
[33] | Wang Z, Fang OY (2017). Relationships between forest canopy greenness and tree radial growth in the Mengshan Mountains of Shandong Province. Acta Ecologica Sinica, 37, 7514-7527. |
[汪舟, 方欧娅 (2017). 山东蒙山森林冠层绿度与树干径向生长的关系. 生态学报, 37, 7514-7527.] | |
[34] | Wei XL, Fan ZX, Kaewmano A, Lin YX, Chen LM, Fu PL (2021). Intra-annual radial growth of Garuga floribunda in tropical seasonal rain forest and its response to environmental factors in Xishuangbanna, Southwest China. Journal of Applied Ecology, 32, 3567-3575. |
[韦小练, 范泽鑫, Kaewmano A, 林友兴, 陈礼敏, 付培立 (2021). 热带季节雨林多花白头树年内径向生长动态及其对环境因子的响应. 应用生态学报, 32, 3567-3575.]
DOI |
|
[35] | Yu J, Chen JJ, Zhou G, Liu GH, Wang YP, Li JQ, Liu QJ (2020). Response of radial growth of Abies forrestii and Picea likiangensis to climate factors in the central Hengduan Mountains, Southwest China. Scientia Silvae Sinicae, 56(12), 28-38. |
[于健, 陈佳佳, 周光, 刘国华, 王永平, 李俊清, 刘琪璟 (2020). 横断山脉中部川滇冷杉和丽江云杉径向生长对气象因子的响应. 林业科学, 56(12), 28-38.] | |
[36] | Yu J, Liu QJ, Meng SW, Zhou G, Shah S, Xu ZZ (2018). Summer temperature variability inferred from tree-ring records in the central Hengduan Mountains, southeastern Tibetan Plateau. Dendrochronologia, 51, 92-100. |
[37] | Yu J, Luo CW, Xu QQ, Meng SW, Li JQ, Liu QJ (2016). Radial growth of Pinus koraiensis and carbon sequastration potential of the old growth forest in Changbai Mountain, Northeast China. Acta Ecologica Sinica, 36, 2626-2636. |
[于健, 罗春旺, 徐倩倩, 孟盛旺, 李俊清, 刘琪璟 (2016). 长白山原始林红松径向生长及林分碳汇潜力. 生态学报, 36, 2626-2636.] | |
[38] | Zhang R, Zhou ZH, Wang CK, Jin Y (2024). Xylem anatomical and hydraulic traits of trees with different wood properties in a temperate forest in northeast China. Journal of Nanjing Forestry University (Natural Sciences Edition), 48(3), 229-236. |
[张瑞, 周正虎, 王传宽, 金鹰 (2024). 东北温带森林不同材性树种木质部解剖和水力性状. 南京林业大学学报(自然科学版), 48(3), 229-236.]
DOI |
|
[39] | Zhang RB, Yuan YJ, Gou XH, Zhang TW, Zou C, Ji CR, Fan ZA, Qin L, Shang HM, Li XJ (2016). Intra-annual radial growth of Schrenk spruce (Picea schrenkiana Fisch. et Mey) and its response to climate on the northern slopes of the Tianshan Mountains. Dendrochronologia, 40, 36-42. |
[40] | Zhao Y, Cai LX, Jin YT, Li JX, Cui D, Chen ZJ (2021). Warming-drying climate intensifies the restriction of moisture on radial growth of Pinus tabuliformis plantation in semi-arid area of Northeast China. Chinese Journal of Applied Ecology, 32, 3459-3467. |
[赵莹, 蔡立新, 靳雨婷, 李俊霞, 崔迪, 陈振举 (2021). 暖干化加剧东北半干旱地区油松人工林径向生长的水分限制. 应用生态学报, 32, 3459-3467.]
DOI |
|
[41] | Zheng QY, Zhang GS, Zhao BQ, Wang XC (2021). Xylem anatomical characteristics of Fraxinus mandshurica and relationship with climate in different slope positions. Chinese Journal of Applied Ecology, 32, 3428-3436. |
[郑勤莹, 张国帅, 赵彬清, 王晓春 (2021). 不同坡位水曲柳木质部解剖特征及其与气候关系. 应用生态学报, 32, 3428-3436.]
DOI |
|
[42] | Zheng ZP (2019). Dynamic Monitoring of Typical Coniferous Species in Humid Subtropical Zone During the Year Based on Micro-core. Master degree dissertation, Fujian Normal University, Fuzhou. |
[郑壮鹏 (2019). 基于微树芯的湿润亚热带典型针叶树种年内生长动态监测. 硕士学位论文, 福建师范大学, 福州.] | |
[43] | Zohner CM, Mirzagholi L, Renner SS, Mo LD, Rebindaine D, Bucher R, Palouš D, Vitasse Y, Fu YH, Stocker BD, Crowther TW (2023). Effect of climate warming on the timing of autumn leaf senescence reverses after the summer solstice. Science, 381, eadf5098. DOI: 10.1126/science.adf5098. |
[44] |
Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006). Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57, 1445-1459.
PMID |
[1] | 郝雅昕, 金光泽, 刘志理. 不同生长季阶段和枝龄对常绿针叶树种枝性状影响[J]. 植物生态学报, 2025, 50(化学计量与功能性状): 0-. |
[2] | 蔡榕榕, 沈历都, 刘雅各, 费雯丽, 戴冠华. 2005-2010年长白山阔叶红松林长期监测样地的物种组成和群落特征数据集[J]. 植物生态学报, 2025, 49(8): 1-. |
[3] | 张箫荻, 王晓霞, 章毓文, 侯靖雨, 石骁鹏, 和璐璐, 刘亚栋, 薛柳, 何宝华, 段劼. 北京山区三种林下灌木水力结构、叶片功能性状及其环境适应策略[J]. 植物生态学报, 2025, 49(7): 1128-1143. |
[4] | 李思雨, 杨风亭, 王辉民, 戴晓琴, 孟盛旺. 杉木和木荷木质部形成季节动态及其对环境因子的响应[J]. 植物生态学报, 2025, 49(2): 295-307. |
[5] | 钱尼澎, 高浩鑫, 宋超杰, 董淳超, 刘琪璟. 长白山白桦径向生长季节动态及其对环境因子的响应[J]. 植物生态学报, 2024, 48(8): 1001-1010. |
[6] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[7] | 李士杰, 王丽, 杜英军, 郑磊, 曾凡锁, 辛颖. 长白山天然水曲柳径向生长对气候的响应[J]. 植物生态学报, 2024, 48(8): 1011-1020. |
[8] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[9] | 马琳, 巢林, 何雨莎, 李忠国, 王爱华, 刘晟源, 胡宝清, 刘艳艳. 热带喀斯特季节性雨林12个树种木质部栓塞抗性与其解剖结构及相关性状间的关系[J]. 植物生态学报, 2024, 48(7): 888-902. |
[10] | 常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[11] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[12] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[13] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[14] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[15] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19