植物生态学报 ›› 2025, Vol. 49 ›› Issue (2): 295-307.DOI: 10.17521/cjpe.2024.0135 cstr: 32100.14.cjpe.2024.0135
李思雨1,2, 杨风亭1, 王辉民1, 戴晓琴1, 孟盛旺1,*()
收稿日期:
2024-04-29
接受日期:
2024-06-20
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
*孟盛旺: (mengsw@igsnrr.ac.cn)基金资助:
LI Si-Yu1,2, YANG Feng-Ting1, WANG Hui-Min1, DAI Xiao-Qin1, MENG Sheng-Wang1,*()
Received:
2024-04-29
Accepted:
2024-06-20
Online:
2025-02-20
Published:
2025-02-20
Supported by:
摘要: 解析木质部形成过程有助于深入了解木材生产力的形成机制及其对气候变化的适应能力, 对制定合理的人工林管理措施至关重要。该研究以千烟洲站的杉木(Cunninghamia lanceolata)和木荷(Schima superba)为对象, 使用微树芯法于2022年监测了两个树种木质部形成的季节动态, 旨在明晰其木质部形成物候、生长动态及差异, 并分析木质部生长速率与环境因子的相关性。结果表明, 杉木和木荷的形成层均于3月下旬开始活动并产生扩大细胞, 4月细胞壁加厚, 5月细胞开始成熟; 木荷于7月细胞扩大结束, 8月底细胞木质化结束, 分别比杉木早48天和21天。杉木生长季持续时间长, 但生长速率显著低于木荷, 导致年生长量小于木荷。在全年尺度上, 气温和土壤含水量对杉木和木荷木质部生长速率均有显著促进作用, 此外, 杉木木质部生长速率还与饱和水汽压差、光合有效辐射显著正相关, 与相对湿度显著负相关, 木荷木质部生长速率与土壤温度显著正相关。温度和土壤水分条件是调控研究区杉木和木荷木质部生长的关键因子。
李思雨, 杨风亭, 王辉民, 戴晓琴, 孟盛旺. 杉木和木荷木质部形成季节动态及其对环境因子的响应. 植物生态学报, 2025, 49(2): 295-307. DOI: 10.17521/cjpe.2024.0135
LI Si-Yu, YANG Feng-Ting, WANG Hui-Min, DAI Xiao-Qin, MENG Sheng-Wang. Seasonal dynamics of xylem formation in Cunninghamia lanceolata and Schima superba and its response to environmental factors. Chinese Journal of Plant Ecology, 2025, 49(2): 295-307. DOI: 10.17521/cjpe.2024.0135
树种 Species | 生活型 Life form | 木材类型 Wood type | 树号 Tree No. | 胸径 Diameter at breast height (cm) |
---|---|---|---|---|
杉木 Cunninghamia lanceolata | 常绿针叶 Evergreen conifer | 无孔材 Non-porous wood | 1 | 22.3 |
2 | 20.5 | |||
3 | 24.0 | |||
4 | 21.6 | |||
木荷 Schima superba | 常绿阔叶 Evergreen broadleaf | 散孔材 Diffuse-porous wood | 1 | 18.7 |
2 | 24.7 | |||
3 | 20.7 |
表1 千烟洲站杉木和木荷样树基本信息
Table 1 Key information about the sample trees of Cunninghamia lanceolata and Schima superba in Qianyanzhou research station
树种 Species | 生活型 Life form | 木材类型 Wood type | 树号 Tree No. | 胸径 Diameter at breast height (cm) |
---|---|---|---|---|
杉木 Cunninghamia lanceolata | 常绿针叶 Evergreen conifer | 无孔材 Non-porous wood | 1 | 22.3 |
2 | 20.5 | |||
3 | 24.0 | |||
4 | 21.6 | |||
木荷 Schima superba | 常绿阔叶 Evergreen broadleaf | 散孔材 Diffuse-porous wood | 1 | 18.7 |
2 | 24.7 | |||
3 | 20.7 |
图1 偏光显微镜下杉木(A)和木荷(B)木质部解剖示意图。Cz, 形成层; Ec, 扩大细胞; M, 成熟细胞; Ph, 韧皮部; vessel, 木质部导管; WT, 细胞壁加厚细胞; Xy, 木质部(上一年年轮)。
Fig. 1 Anatomical diagram of xylem of Cunninghamia lanceolata (A) and Schima superba (B) under polarized light microscope. Cz, cambium zone; Ec, enlargement cells; M, mature cells; Ph, phloem; WT, wall thickening cells; Xy, xylem in last year.
图2 2022年千烟洲站气候特征。PAR, 光合有效辐射; Pre, 降水量; RH, 相对湿度; ST, 土壤温度; SWC, 土壤含水量; Tmax, 最高气温; Tmean, 平均气温; Tmin, 最低气温; VPD, 饱和水汽压差。
Fig. 2 Climate characteristics of Qianyanzhou Station in 2022. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative humidity; ST, soil temperature; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; VPD, saturated vapor pressure difference.
图3 杉木和木荷木质部形成的关键日期(A)和持续时间(B), 以年序日(DOY)表示(平均值±标准差)。ns, p > 0.05; **, p < 0.01。
Fig. 3 Key dates (A) and duration (B) of xylem formation in Cunninghamia lanceolata and Schima superba, expressed in day of year (DOY) (mean ± SD). ns, p > 0.05; **, p < 0.01.
图4 杉木和木荷木质部形成细胞分化各阶段生长量宽度变化(平均值±标准误), 包括形成层区域(A、E)、扩大细胞区域(B、F)、细胞壁加厚区域(C、G)、成熟细胞区域(D、H)。其中杉木细胞壁加厚的“双峰”趋势可在图C右上角小图中清晰观察到。
Fig. 4 Variation of ring width at each stage of cell differentiation during xylem formation (mean ± SE) in Cunninghamia lanceolata and Schima superba, including cambium zone (A, E), enlarging cells zone (B, F), wall thickening zone (C, G) and mature cells zone (D, H). The bimodal pattern of the cell wall thickening in C. lanceolata is clearly visible in the small figure at the upper right corner of panel C.
树种 Species | 树号 Tree No. | A | β | k | 调整R2 Adjust R2 | rmean (μm·d-1) | rmax (μm·d-1) | tp |
---|---|---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 1 | 679.49 ± 58.62 | 2.12 ± 0.38 | 0.015 ± 0.003 | 0.92 | 2.29 | 3.75 | 141.33 |
2 | 1 130.06 ± 249.69 | 2.21 ± 0.45 | 0.010 ± 0.003 | 0.89 | 2.54 | 4.16 | 221.00 | |
3 | 871.06 ± 46.14 | 2.55 ± 0.61 | 0.023 ± 0.005 | 0.84 | 4.51 | 7.37 | 110.87 | |
4 | 443.55 ± 29.66 | 2.50 ± 0.56 | 0.018 ± 0.004 | 0.85 | 1.80 | 2.94 | 138.89 | |
平均 Mean | 754.50 ± 39.16 | 1.81 ± 0.19 | 0.013 ± 0.002 | 0.95 | 2.21b | 3.61b | 139.23a | |
木荷 Schima superba | 1 | 973.60 ± 48.70 | 8.24 ± 4.99 | 0.067 ± 0.040 | 0.78 | 14.68 | 24.00 | 122.99 |
2 | 2 213.90 ± 69.46 | 6.56 ± 1.71 | 0.047 ± 0.012 | 0.92 | 23.41 | 38.28 | 139.57 | |
3 | 2 183.16 ± 66.56 | 8.40 ± 2.97 | 0.065 ± 0.022 | 0.91 | 31.93 | 52.20 | 129.23 | |
平均 Mean | 1 745.44 ± 50.81 | 7.59 ± 2.32 | 0.058 ± 0.017 | 0.92 | 22.78a | 37.24a | 130.86a |
表2 Gompertz模型对杉木和木荷木质部年生长量的拟合结果
Table 2 Fitting results of the Gompertz function for xylem annual growth in Cunninghamia lanceolata and Schima superba
树种 Species | 树号 Tree No. | A | β | k | 调整R2 Adjust R2 | rmean (μm·d-1) | rmax (μm·d-1) | tp |
---|---|---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 1 | 679.49 ± 58.62 | 2.12 ± 0.38 | 0.015 ± 0.003 | 0.92 | 2.29 | 3.75 | 141.33 |
2 | 1 130.06 ± 249.69 | 2.21 ± 0.45 | 0.010 ± 0.003 | 0.89 | 2.54 | 4.16 | 221.00 | |
3 | 871.06 ± 46.14 | 2.55 ± 0.61 | 0.023 ± 0.005 | 0.84 | 4.51 | 7.37 | 110.87 | |
4 | 443.55 ± 29.66 | 2.50 ± 0.56 | 0.018 ± 0.004 | 0.85 | 1.80 | 2.94 | 138.89 | |
平均 Mean | 754.50 ± 39.16 | 1.81 ± 0.19 | 0.013 ± 0.002 | 0.95 | 2.21b | 3.61b | 139.23a | |
木荷 Schima superba | 1 | 973.60 ± 48.70 | 8.24 ± 4.99 | 0.067 ± 0.040 | 0.78 | 14.68 | 24.00 | 122.99 |
2 | 2 213.90 ± 69.46 | 6.56 ± 1.71 | 0.047 ± 0.012 | 0.92 | 23.41 | 38.28 | 139.57 | |
3 | 2 183.16 ± 66.56 | 8.40 ± 2.97 | 0.065 ± 0.022 | 0.91 | 31.93 | 52.20 | 129.23 | |
平均 Mean | 1 745.44 ± 50.81 | 7.59 ± 2.32 | 0.058 ± 0.017 | 0.92 | 22.78a | 37.24a | 130.86a |
图5 Gompertz模型拟合的杉木和木荷木质部生长动态曲线(A、B)及生长速率曲线(C、D)。
Fig. 5 Xylem growth dynamics (A, B) and growth rates (C, D) of Cunninghamia lanceolata and Schima superba, fitted using Gompertz model.
图6 杉木和木荷木质部生长速率与环境因子的Pearson相关系数。*, p < 0.05; **, p < 0.01; ***, p < 0.001。PAR, 光合有效辐射; Pre, 降水量; RH, 相对湿度; ST, 土壤温度; SWC, 土壤含水量; Tmax, 最高气温; Tmean, 平均气温; Tmin, 最低气温; VPD, 饱和水汽压差。
Fig. 6 Pearson correlation coefficients between xylem growth rate and environmental factors of Cunninghamia lanceolata and Schima superba. *, p < 0.05; **, p < 0.01; ***, p < 0.001. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative humidity; ST, soil temperature; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; VPD, saturated vapor pressure difference.
图7 杉木(A)和木荷(B)木质部生长速率(XGR)与环境因子的主成分(PC)分析。PAR, 光合有效辐射; Pre, 降水量; RH, 相对湿度; ST, 土壤温度; SWC, 土壤含水量; Tmax, 最高气温; Tmean, 平均气温; Tmin, 最低气温; VPD, 饱和水汽压差。
Fig. 7 Principal component (PC) analysis of xylem growth rate (XGR) and environmental factors in Cunninghamia lanceolata (A) and Schima superba (B). PAR, photosynthetically active radiation; Pre, precipitation; RH, relative humidity; ST, soil temperature; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; VPD, saturated vapor pressure difference.
图8 夏季干旱月份杉木(A)和木荷(B)木质部形成过程中出现的异常特征。
Fig. 8 Xylem growth characteristics of Cunninghamia lanceolata (A) and Schima superba (B) during dry months in summer drought.
[1] | Abreu IN, Johansson AI, Sokołowska K, Niittylä T, Sundberg B, Hvidsten TR, Street NR, Moritz T (2020). A metabolite roadmap of the wood-forming tissue in Populus tremula. New Phytologist, 228, 1559-1572. |
[2] | Babst F, Bouriaud O, Papale D, Gielen B, Janssens IA, Nikinmaa E, Ibrom A, Wu J, Bernhofer C, Köstner B, Grünwald T, Seufert G, Ciais P, Frank D (2014). Above- ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytologist, 201, 1289-1303. |
[3] | Balducci L, Cuny HE, Rathgeber CBK, Deslauriers A, Giovannelli A, Rossi S (2016). Compensatory mechanisms mitigate the effect of warming and drought on wood formation. Plant, Cell & Environment, 39, 1338-1352. |
[4] | Begum S, Kudo K, Rahman MH, Nakaba S, Yamagishi Y, Nabeshima E, Nugroho WD, Oribe Y, Kitin P, Jin HO, Funada R (2018). Climate change and the regulation of wood formation in trees by temperature. Trees, 32, 3-15. |
[5] |
Cabon A, Kannenberg SA, Arain A, Babst F, Baldocchi D, Belmecheri S, Delpierre N, Guerrieri R, Maxwell JT, McKenzie S, Meinzer FC, Moore DJP, Pappas C, Rocha AV, Szejner P, et al. (2022). Cross-biome synthesis of source versus sink limits to tree growth. Science, 376, 758-761.
DOI PMID |
[6] |
Camarero JJ, Olano JM, Parras A (2010). Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytologist, 185, 471-480.
DOI PMID |
[7] |
Chen YZ, Rademacher T, Fonti P, Eckes-Shephard AH, LeMoine JM, Fonti MV, Richardson AD, Friend AD (2022). Inter-annual and inter-species tree growth explained by phenology of xylogenesis. New Phytologist, 235, 939-952.
DOI PMID |
[8] | Cook-Patton SC, Leavitt SM, Gibbs D, Harris NL, Lister K, Anderson-Teixeira KJ, Briggs RD, Chazdon RL, Crowther TW, Ellis PW, Griscom HP, Herrmann V, Holl KD, Houghton RA, Larrosa C, et al. (2020). Mapping carbon accumulation potential from global natural forest regrowth. Nature, 585, 545-550. |
[9] | Cuny HE, Rathgeber CBK, Frank D, Fonti P, Mäkinen H, Prislan P, Rossi S, Del Castillo EM, Campelo F, Vavrčík H, Camarero JJ, Bryukhanova MV, Jyske T, Gričar J, Gryc V, et al. (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 1, 15160. DOI: 10.1038/nplants.2015.160. |
[10] |
Deslauriers A, Huang J, Balducci L, Beaulieu M, Rossi S (2016). The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiology, 170, 2072-2084.
DOI PMID |
[11] |
Dox I, Prislan P, Gričar J, Mariën B, Delpierre N, Flores O, Leys S, Rathgeber CBK, Fonti P, Campioli M (2021). Drought elicits contrasting responses on the autumn dynamics of wood formation in late successional deciduous tree species. Tree Physiology, 41, 1171-1185.
DOI PMID |
[12] | Farooq TH, Shakoor A, Wu X, Li Y, Rashid M, Zhang X, Gilani MM, Kumar U, Chen X, Yan W (2021). Perspectives of plantation forests in the sustainable forest development of China. iForest - Biogeosciences and Forestry, 14, 166-174. |
[13] |
Garcia-Forner N, Vieira J, Nabais C, Carvalho A, Martínez- Vilalta J, Campelo F (2019). Climatic and physiological regulation of the bimodal xylem formation pattern in Pinus pinaster saplings. Tree Physiology, 39, 2008-2018.
DOI PMID |
[14] | Guada G, Vázquez-Ruiz RA, García-González I (2019). Response patterns of xylem and leaf phenology to temperature at the southwestern distribution boundary of Quercus robur: a multi-spatial study. Agricultural and Forest Meteorology, 269-270, 46-56. |
[15] | Guo XL, Yu BY, Zhang SK, Li JY, Wang J, Huang JG (2019). Research progresses on xylem formation dynamics and its regulation mechanism. Journal of Tropical and Subtropical Botany, 27, 541-547. |
[郭霞丽, 余碧云, 张邵康, 黎敬业, 王婕, 黄建国 (2019). 树木木质部生长动态及其调节机制研究进展. 热带亚热带植物学报, 27, 541-547.] | |
[16] | Huang J, Guo X, Rossi S, Zhai L, Yu B, Zhang S, Zhang M (2018). Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. Tree Physiology, 38, 1225-1236. |
[17] | Huang J, Ma Q, Rossi S, Biondi F, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhang J, Antonucci S, et al. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 117, 20645-20652. |
[18] | Huang J, Zhang Y, Wang M, Yu X, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhai L, Zhang J, et al. (2023). A critical thermal transition driving spring phenology of Northern Hemisphere conifers. Global Change Biology, 29, 1606-1617. |
[19] | Jiang Y, Zhang X, Chhin S, Zhang J (2021). A bimodal pattern and age-related growth of intra-annual wood cell development of Chinese fir in subtropical China. Frontiers in Plant Science, 12, 757438. DOI: 10.3389/fpls.2021.757438. |
[20] |
Jin JX, Cai YL, Guo X, Wang LH, Wang Y, Liu YB (2023). Decoupled driving forces of variabilities of transpiration in Chinese subtropical vegetation based on remote sensing data. Acta Geographica Sinica, 78, 1779-1791.
DOI |
[金佳鑫, 蔡裕龙, 郭熙, 王龙浩, 王颖, 刘元波 (2023). 中国亚热带植被蒸腾驱动力解耦分析. 地理学报, 78, 1779-1791.]
DOI |
|
[21] |
Jin Y, Wang CK, Zhou ZH (2016). Mechanisms of xylem embolism repair in woody plants: research progress and questions. Chinese Journal of Plant Ecology, 40, 834-846.
DOI |
[金鹰, 王传宽, 周正虎 (2016). 木本植物木质部栓塞修复机制: 研究进展与问题. 植物生态学报, 40, 834-846.]
DOI |
|
[22] | Kaewmano A, Fu P, Fan Z, Pumijumnong N, Zuidema PA, Bräuning A (2022). Climatic influences on intra-annual stem radial variations and xylem formation of Toona ciliata at two Asian tropical forest sites with contrasting soil water availability. Agricultural and Forest Meteorology, 318, 108906. DOI: 10.1016/j.agrformet.2022.108906. |
[23] | Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2011). Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees, 25, 59-70. |
[24] | Li KJ, Bai QS, Yao J, Wang YL, Lian HM, Zhang Q, He BX, Cai YL (2021). Research progress on cultivation and utilization of Schima superba in China. Forestry and Environmental Science, 37(6), 188-195. |
[李可见, 白青松, 尧俊, 汪迎利, 连辉明, 张谦, 何波祥, 蔡燕灵 (2021). 我国木荷培育和利用研究进展. 林业与环境科学, 37(6), 188-195.] | |
[25] | Li WX, Yue FX, Wang CK, Liao JL, Zhang XL (2022). Climatic influences on intra-annual stem variation of Larix principis-rupprechtii in a semi-arid region. Frontiers in Forests and Global Change, 5, 948022. DOI: 10.3389/ ffgc.2022.948022. |
[26] | Li X, Liang E, Camarero JJ, Rossi S, Zhang J, Zhu H, Fu Y, Sun J, Wang T, Piao S, Peñuelas J (2023). Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion. National Science Review, 10, nwad182. DOI: 10.1093/nsr/nwad182. |
[27] | Liu B, Liu Q, Daryanto S, Guo S, Huang Z, Wang Z, Wang L, Ma X (2018). Responses of Chinese fir and Schima superba seedlings to light gradients: implications for the restoration of mixed broadleaf-conifer forests from Chinese fir monocultures. Forest Ecology and Management, 419-420, 51-57. |
[28] | Martínez-Sancho E, Gutiérrez E, Valeriano C, Ribas M, Popkova MI, Shishov VV, Dorado-Liñán I (2021). Intra- and inter-annual growth patterns of a mixed pine-oak forest under Mediterranean climate. Forests, 12, 1746. DOI: 10.3390/f12121746. |
[29] | Meng SW, Fu XL, Zhao B, Dai XQ, Li QK, Yang FT, Kou L, Wang HM (2021). Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees, 35, 1817-1830. |
[30] | Meng SW, Yang FT, Dai XQ, Wang HM (2021). Radial growth dynamics of Chinese fir and its response to seasonal drought. Chinese Journal of Applied Ecology, 32, 3521-3530. |
[孟盛旺, 杨风亭, 戴晓琴, 王辉民 (2021). 杉木径向生长动态及其对季节性干旱的响应. 应用生态学报, 32, 3521-3530.]
DOI |
|
[31] |
Morino K, Minor RL, Barron-Gafford GA, Brown PM, Hughes MK (2021). Bimodal cambial activity and false-ring formation in conifers under a monsoon climate. Tree Physiology, 41, 1893-1905.
DOI PMID |
[32] | Oberhuber W, Sehrt M, Kitz F (2020). Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agricultural and Forest Meteorology, 290, 108026. DOI: 10.1016/j.agrformet.2020.108026. |
[33] | Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[34] | Peters RL, Steppe K, Cuny HE, de Pauw DJW, Frank DC, Schaub M, Rathgeber CBK, Cabon A, Fonti P (2021). Turgor—A limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229, 213-229. |
[35] | Pompa-García M, Camarero JJ, Colangelo M (2023). Different xylogenesis responses to atmospheric water demand contribute to species coexistence in a mixed pine-oak forest. Journal of Forestry Research, 34, 51-62. |
[36] |
Prislan P, Cufar K, de Luis M, Gricar J (2018). Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. Tree Physiology, 38, 186-197.
DOI PMID |
[37] | Qian N, Gao H, Xu Z, Song C, Dong C, Zeng W, Sun Z, Siqing B, Liu Q (2023). Cambial phenology and wood formation of Korean pine in response to climate change in Changbai Mountain, Northeast China. Dendrochronologia, 77, 126045. DOI: 10.1016/j.dendro.2022.126045. |
[38] | Qian NP, Xu ZZ, Gao HX, Song CJ, Dong CC, Hu B, Liu QJ (2024). Linkages between intra-annual radial growth and photosynthetic production of four main species in a temperate forest in Northeast China. Agricultural and Forest Meteorology, 345, 109866. DOI: 10.1016/j.agrformet.2023.109866. |
[39] |
Rathgeber CBK, Rossi S, Bontemps JD (2011). Cambial activity related to tree size in a mature silver-fir plantation. Annals of Botany, 108, 429-438.
DOI PMID |
[40] | Ren P, Rossi S, Gricar J, Liang EY, Cufar K (2015). Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Annals of Botany, 115, 629-639. |
[41] |
Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang JG, Jyske T, Kašpar J, King G, Krause C, Liang EY, et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22, 3804-3813.
DOI PMID |
[42] | Rossi S, Anfodillo T, Menardi R (2006). Trephor: a new tool for sampling microcores from tree stems. IAWA Journal, 27, 89-97. |
[43] | Rossi S, Deslauriers A, Morin H (2003). Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia, 21, 33-39. |
[44] |
Rossi S, Girard MJ, Morin H (2014). Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Global Change Biology, 20, 2261-2271.
DOI PMID |
[45] | Sanmiguel-Vallelado A, Camarero JJ, Morán-Tejeda E, Gazol A, Colangelo M, Alonso-González E, López-Moreno JI (2021). Snow dynamics influence tree growth by controlling soil temperature in mountain pine forests. Agricultural and Forest Meteorology, 296, 108205. DOI: 10.1016/j.agrformet.2020.108205. |
[46] |
Steppe K, Sterck F, Deslauriers A (2015). Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science, 20, 335-343.
DOI PMID |
[47] | Wang J, Yu BY, Huang JG (2020). Xylem formation and response to climate of Castanea henryi in Dinghushan Mountain. Journal of Tropical and Subtropical Botany, 28, 445-454. |
[王婕, 余碧云, 黄建国 (2020). 鼎湖山锥栗木质部形成及其对气候的响应. 热带亚热带植物学报, 28, 445-454.] | |
[48] |
Wang YT, Zhang JZ, Liu JJ, Wang LJ, Li YL (2024). Research progress on cambium activity and radial growth dynamics monitoring of coniferous species. Chinese Journal of Applied Ecology, 35, 1223-1232.
DOI |
[王悦桐, 张军周, 刘俊俊, 王丽娟, 李玉麟 (2024). 针叶树形成层活动及径向生长监测研究进展. 应用生态学报, 35, 1223-1232.]
DOI |
|
[49] | Weigel R, Bat-Enerel B, Dulamsuren C, Muffler L, Weithmann G, Leuschner C (2023). Summer drought exposure, stand structure, and soil properties jointly control the growth of European beech along a steep precipitation gradient in northern Germany. Global Change Biology, 29, 763-779. |
[50] | Yu J, Liu Q, Meng S, Zhou G, Shah S, Xu Z (2018). Summer temperature variability inferred from tree-ring records in the central Hengduan Mountains, southeastern Tibetan Plateau. Dendrochronologia, 51, 92-100. |
[51] | Yuan X, Wang L, Wu P, Ji P, Sheffield J, Zhang M (2019). Anthropogenic shift towards higher risk of flash drought over China. Nature Communications, 10, 4661. DOI: 10.1038/s41467-019-12692-7. |
[52] |
Zhai L, Bergeron Y, Huang J, Berninger F (2012). Variation in intra-annual wood formation, and foliage and shoot development of three major Canadian boreal tree species. American Journal of Botany, 99, 827-837.
DOI PMID |
[53] | Zhang J, Gou X, Alexander MR, Xia J, Wang F, Zhang F, Man Z, Pederson N (2021). Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. Catena, 196, 104936. DOI: 10.1016/j.catena.2020.104936. |
[54] | Zhang YP, Luo PF, Xu JL, Hou JY, Zhai LX (2022). Intra-annual growth and its response to climatic factors of two Salix species under warm temperate environment. Forests, 13, 1441. DOI:10.3390/f13091441. |
[55] | Zhao HM, Wu JB, Wang AZ, Guan DX, Liu YG (2022). Microtopography mediates the climate-growth relationship and growth resilience to drought of Pinus tabulaeformis plantation in the hilly site. Frontiers in Plant Science, 13, 1060011. DOI: 10.3389/fpls.2022.1060011. |
[1] | 邵畅畅, 段洪浪, 赵熙州, 丁贵杰. 树木干旱死亡点预测及致死生理机制研究进展[J]. 植物生态学报, 2025, 49(2): 221-231. |
[2] | 钱尼澎, 高浩鑫, 宋超杰, 董淳超, 刘琪璟. 长白山白桦径向生长季节动态及其对环境因子的响应[J]. 植物生态学报, 2024, 48(8): 1001-1010. |
[3] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[4] | 马琳, 巢林, 何雨莎, 李忠国, 王爱华, 刘晟源, 胡宝清, 刘艳艳. 热带喀斯特季节性雨林12个树种木质部栓塞抗性与其解剖结构及相关性状间的关系[J]. 植物生态学报, 2024, 48(7): 888-902. |
[5] | 常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[6] | 张雨鉴, 刘艳红. 林火干扰下的树木生理及主要影响因素[J]. 植物生态学报, 2024, 48(3): 269-286. |
[7] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[8] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[9] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[10] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[11] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[12] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[13] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[14] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[15] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19