植物生态学报 ›› 2025, Vol. 49 ›› Issue (7): 1128-1143.DOI: 10.17521/cjpe.2024.0165 cstr: 32100.14.cjpe.2024.0165
张箫荻1,*, 王晓霞1,*, 章毓文2, 侯靖雨1, 石骁鹏1, 和璐璐1, 刘亚栋1, 薛柳3, 何宝华3, 段劼1,**()
收稿日期:
2024-05-21
接受日期:
2024-10-09
出版日期:
2025-07-20
发布日期:
2024-10-11
通讯作者:
**段劼, E-mail: duanjie@bjfu.edu.cn作者简介:
第一联系人:*同等贡献
ZHANG Xiao-Di1,*, WANG Xiao-Xia1,*, ZHANG Yu-Wen2, HOU Jing-Yu1, SHI Xiao-Peng1, HE Lu-Lu1, LIU Ya-Dong1, XUE Liu3, HE Bao-Hua3, DUAN Jie1,**()
Received:
2024-05-21
Accepted:
2024-10-09
Online:
2025-07-20
Published:
2024-10-11
About author:
First author contact:*Contributed equally to this work
摘要:
深入研究3种典型林下灌木物种黄荆(Vitex negundo)、扁担杆(Grewia biloba)和蒙桑(Morus mongolica)木质部水力性状和叶片功能性状, 了解根、茎、枝、叶木质部长距离水分传输系统特征, 可以揭示其对环境的适应策略, 从而为森林植被管理和恢复提供理论依据。该研究通过野外和室内实验测定叶片功能性状(叶面积、净光合速率、叶水势等), 对3种灌木物种的根、茎、枝的木质部解剖结构(导管直径、导管密度等)进行切片观察, 计算水力性状(比导水率、水力脆弱性指数)。研究结果表明: (1) 3种灌木叶片形态、水力及功能性状差异显著; 黄荆叶面积小而比叶质量大, 比叶质量、净光合速率最大; 扁担杆叶脉体积最大、净光合和蒸腾速率最小; 蒙桑叶面积、正午叶水势最大。(2) 3种灌木根、茎、枝木质部导管特征与水力性状差异显著; 黄荆输水效率地上部分大于地下部分; 扁担杆木质部各部位输水效率保持平衡, 抗栓塞性最强; 蒙桑各部位输水效率均保持较高水平, 抗栓塞性最弱。(3)相关性分析表明, 3种灌木木质部水力性状影响着大部分叶片结构性状及水力性状的变化。(4)主成分分析表明, 扁担杆趋向于保守的慢对策, 蒙桑趋向于耗水型的快对策, 黄荆的适应策略介于二者之间。
张箫荻, 王晓霞, 章毓文, 侯靖雨, 石骁鹏, 和璐璐, 刘亚栋, 薛柳, 何宝华, 段劼. 北京山区三种林下灌木水力结构、叶片功能性状及其环境适应策略. 植物生态学报, 2025, 49(7): 1128-1143. DOI: 10.17521/cjpe.2024.0165
ZHANG Xiao-Di, WANG Xiao-Xia, ZHANG Yu-Wen, HOU Jing-Yu, SHI Xiao-Peng, HE Lu-Lu, LIU Ya-Dong, XUE Liu, HE Bao-Hua, DUAN Jie. Hydraulic architecture, leaf functional traits and environmental adaptation strategies of three understory shrubs in Beijing mountainous areas. Chinese Journal of Plant Ecology, 2025, 49(7): 1128-1143. DOI: 10.17521/cjpe.2024.0165
样方 Plot | 灌木及幼树 Shrubs and young trees | 草本 Herb | ||||||
---|---|---|---|---|---|---|---|---|
盖度 Coverage (%) | 平均高度 Mean height (m) | 香农-威纳指数 Shannon-Winer index | 辛普森指数 Simpson index | 盖度 Coverage (%) | 平均高度 Mean height (m) | 香农-威纳指数 Shannon-Winer index | 辛普森指数 Simpson index | |
P1 | 60.568 | 0.560 | 1.508 | 0.777 | 17.706 | 0.122 | 0.505 | 0.437 |
P2 | 72.113 | 0.578 | 1.593 | 0.767 | 8.687 | 0.121 | 0.336 | 0.400 |
P3 | 32.537 | 0.360 | 1.202 | 0.750 | 6.667 | 0.008 | 0.339 | 0.252 |
表1 北京西山3个样方林下植物群落特征
Table 1 Characteristics of understory plant communities of three plots in West Mountain of Beijing
样方 Plot | 灌木及幼树 Shrubs and young trees | 草本 Herb | ||||||
---|---|---|---|---|---|---|---|---|
盖度 Coverage (%) | 平均高度 Mean height (m) | 香农-威纳指数 Shannon-Winer index | 辛普森指数 Simpson index | 盖度 Coverage (%) | 平均高度 Mean height (m) | 香农-威纳指数 Shannon-Winer index | 辛普森指数 Simpson index | |
P1 | 60.568 | 0.560 | 1.508 | 0.777 | 17.706 | 0.122 | 0.505 | 0.437 |
P2 | 72.113 | 0.578 | 1.593 | 0.767 | 8.687 | 0.121 | 0.336 | 0.400 |
P3 | 32.537 | 0.360 | 1.202 | 0.750 | 6.667 | 0.008 | 0.339 | 0.252 |
样方 Plot | 黄荆 Vitex negundo | 扁担杆 Grewia biloba | 蒙桑 Morus mongolica | ||||||
---|---|---|---|---|---|---|---|---|---|
重要值及序次 Importance value & order | 取样数 Sampling frequency | 重要值及序次 Importance value & order | 取样数 Sampling frequency | 重要值及序次 Importance value & order | 取样数 Sampling frequency | ||||
P1 | 0.219 ± 0.041a | I | 7 | 0.146 ± 0.037b | II | 7 | 0.106 ± 0.039b | III | 4 |
P2 | 0.134 ± 0.037b | II | 6 | 0.238 ± 0.052a | I | 6 | 0.134 ± 0.013b | III | 3 |
P3 | 0.095 ± 0.006b | II | 4 | 0.362 ± 0.073a | I | 6 | 0.109 ± 0.013b | III | 6 |
总计 Total | 0.149 ± 0.025b | II | 17 | 0.269 ± 0.042a | I | 19 | 0.114 ± 0.014b | III | 13 |
表2 北京西山3种灌木在3个样方中的重要值序次与取样数(平均值±标准误)
Table 2 Order of importance values and sampling frequency of three shrub species in three plots in West Mountain of Beijing (mean ± SE)
样方 Plot | 黄荆 Vitex negundo | 扁担杆 Grewia biloba | 蒙桑 Morus mongolica | ||||||
---|---|---|---|---|---|---|---|---|---|
重要值及序次 Importance value & order | 取样数 Sampling frequency | 重要值及序次 Importance value & order | 取样数 Sampling frequency | 重要值及序次 Importance value & order | 取样数 Sampling frequency | ||||
P1 | 0.219 ± 0.041a | I | 7 | 0.146 ± 0.037b | II | 7 | 0.106 ± 0.039b | III | 4 |
P2 | 0.134 ± 0.037b | II | 6 | 0.238 ± 0.052a | I | 6 | 0.134 ± 0.013b | III | 3 |
P3 | 0.095 ± 0.006b | II | 4 | 0.362 ± 0.073a | I | 6 | 0.109 ± 0.013b | III | 6 |
总计 Total | 0.149 ± 0.025b | II | 17 | 0.269 ± 0.042a | I | 19 | 0.114 ± 0.014b | III | 13 |
物种 Species | 叶厚度 Leaf thickness (mm) | 叶干物质量 Leaf dry matter content (g) | 叶面积 Leaf area (cm2) | 比叶质量 Leaf mass per area (g·cm-2) |
---|---|---|---|---|
黄荆 Vitex negundo | 0.085 ± 0.004b | 0.573 ± 0.089a | 23.533 ± 2.964c | 268.895 ± 42.217a |
扁担杆 Grewia biloba | 0.147 ± 0.009a | 0.511 ± 0.089a | 43.770 ± 4.668b | 128.332 ± 23.951b |
蒙桑 Morus mongolica | 0.159 ± 0.007a | 0.604 ± 0.140a | 76.033 ± 5.307a | 80.979 ± 18.977b |
表3 北京西山3种灌木叶片形态特征(平均值±标准误)
Table 3 Morphological characteristics of leaves of the three shrubs in West Mountain of Beijing (mean ± SE)
物种 Species | 叶厚度 Leaf thickness (mm) | 叶干物质量 Leaf dry matter content (g) | 叶面积 Leaf area (cm2) | 比叶质量 Leaf mass per area (g·cm-2) |
---|---|---|---|---|
黄荆 Vitex negundo | 0.085 ± 0.004b | 0.573 ± 0.089a | 23.533 ± 2.964c | 268.895 ± 42.217a |
扁担杆 Grewia biloba | 0.147 ± 0.009a | 0.511 ± 0.089a | 43.770 ± 4.668b | 128.332 ± 23.951b |
蒙桑 Morus mongolica | 0.159 ± 0.007a | 0.604 ± 0.140a | 76.033 ± 5.307a | 80.979 ± 18.977b |
图1 北京西山3种灌木叶脉结构差异性。不同小写字母表示3种灌木之间差异显著(p < 0.05)。
Fig. 1 Differences in leaf vein structure of three shrubs in West Mountain of Beijing. Different lowercase letters indicate significant differences among three shrubs (p < 0.05).
图2 北京西山3种灌木叶片功能性状和气体交换特征差异性(平均值±标准误)。不同小写字母表示3种灌木之间差异显著(p < 0.05)。
Fig. 2 Differences in photosynthetic physiological parameters of leaves of three shrubs in West Mountain of Beijing (mean ± SE). Different lowercase letters indicate significant differences among three shrubs (p < 0.05).
图3 北京西山3种灌木根、茎、枝木质部导管特征(平均值±标准误)。不同大写字母表示不同物种间差异显著, 不同小写字母表示不同输水部位间差异显著(p < 0.05)。
Fig. 3 Characteristics of xylem vessels in roots, stems, and branches of three shrubs in West Mountain of Beijing (mean ± SE). Different uppercase letters indicate significant differences among different species, and different lowercase letters indicate significant differences among different water delivery sites (p < 0.05).
图4 北京西山3种灌木枝木质部横切面显微结构。从左到右(A-C)依次为黄荆、扁担杆和蒙桑的一年生枝条木质部横切面显微图像。红色为番红染色结果, 蓝绿色为固绿染色结果。
Fig. 4 Cross-sectional microstructure of root-stem-branch xylem of three shrubs in West Mountain of Beijing. From left to right (A-C) are xylem cross-sectional microscopic images of annual branches of Vitex negundo, Grewia biloba, Morus mongolica. Red sections were dyed by safranin, while blue-green sections were dyed by fast green.
图5 北京西山3种灌木根、茎、枝木质部导管直径分布特征(平均值±标准误)。A-C, 黄荆根、茎、枝的木质部导管直径大小分布。D-F, 扁担杆根、茎、枝的木质部导管直径大小分布。G-I, 蒙桑根、茎、枝的木质部导管直径大小分布。I, 导管大小分布频率; II, 某一径阶导管对总导水率的贡献百分数。
Fig. 5 Xylem vessel diameter distributions in roots, stems, and branches of three shrubs in West Mountain of Beijing (mean ± SE). A-C, Size distribution of the xylem vessel diameters in the roots, stems, and branches of Vitex negundo. D-F, Size distribution of the xylem vessel diameters in the roots, stems, and branches of Grewia biloba. G-I, Size distribution of the xylem vessel diameters in the roots, stems, and branches of Morus mongolica. I, distribution of vessel diameter frequency; II, contribution of a certain size class of conduits to hydraulic conductivity (Kh).
图6 北京西山3种灌木木质部水力性状间的相关性。Dm, 平均导管直径; Dh, 水力直径; Dv, 导管密度; Aves/Axyl, 导管面积/木质部面积; Ks, 比导水率; VI, 水力脆弱性指数。Ks和VI采用该物种木质部水分传输系统3个组织部位的均值。
Fig. 6 Correlation between xylem hydraulic traits of three shrubs in West Mountain of Beijing. Dm, mean vessel diameter; Dh, hydraulic diameter; Dv, vessel density; Aves/Axy, vessel area/xylem area; Ks, specific hydraulic conductivity; VI, hydraulic vulnerability Index. Ks and VI were averaged from the three organs in each species.
图7 北京西山3种林下灌木功能性状间相关性网络。仅显示显著相关(p < 0.05)的功能性状, 红色边框代表度中心性值最高的性状, 不包含2.4提及的木质部解剖结构性状。ψmid, 正午叶水势; Gs, 气孔导度; Ks, 木质部比导水率(根、茎、枝均值); Pn, 净光合速率; Tr, 蒸腾速率; WUEi, 叶片水分利用效率; VD, 次级叶脉直径; VI, 水力脆弱性指数(根、茎、枝均值); VLA, 次级叶脉密度; VV, 叶脉体积。
Fig. 7 Correlation network between functional traits of three understory shrubs in West Mountain of Beijing. Only significant correlations (p < 0.05) were shown, the red border represents the trait with the highest degree centrality values, excluding the xylem anatomical structural traits mentioned in 2.4. ψmid, mid-day leaf water potential; Gs, stomatal conductance; Ks, xylem specific hydraulic conductivity (root-stem- shoot mean); Pn, net photosynthetic rate; Tr, transpiration rate; WUEi, leaf instantaneous water use efficiency; VD, secondary vein diameter; VI, hydraulic vulnerability index (root-stem- shoot mean); VLA, secondary leaf vein density; VV, leaf vein volume.
图8 北京西山3种林下灌木不同功能性状线性回归分析(平均值±标准误)。阴影代表95%的置信区间。VV、VI和Ks同图7。
Fig. 8 Linear regression analysis between different functional traits of three understory shrubs in West Mountain of Beijing (mean ± SE). Shading represents a 95% confidence interval. VV, VI, Ks see Fig. 7.
图9 北京地区3种灌木水力结构及功能性状主成分(PC)分析。Aves/Axyl, 导管面积/木质部面积; Dh, 水力直径; Dm, 平均导管直径; Dv, 导管密度; Gs, 气孔导度; Ks, 木质部比导水率(根、茎、枝均值); LA, 叶面积; LDMC, 叶干质量; LMA, 比叶质量; LT, 叶厚度; Pn, 净光合速率; Tr, 蒸腾速率; VD, 次级叶脉直径; VI, 水力脆弱性指数(根、茎、枝均值); VLA, 次级叶脉密度; VV, 叶脉体积; WUEi, 叶片水分利用效率; ψmid, 正午叶水势。
Fig. 9 Principal component (PC) analysis of hydraulic structure and functional traits of three shrubs in West Mountains of Beijing. Aves/Axyl, vessel area/xylem area; Dh, hydraulic diameter; Dm, mean vessel diameter; Dv, vessel density; Gs, stomatal conductance; Ks, xylem specific hydraulic conductivity (root, stem, shoot mean); LA, leaf area; LDMC, leaf dry matter content; LMA, leaf mass per area; LT, leaf thickness; Pn, net photosynthetic rate; Tr, transpiration rate; VD, secondary vein diameter; VI, hydraulic vulnerability index (root, stem, shoot mean); VLA, secondary leaf vein density; VV, leaf vein volume; WUEi, leaf instantaneous water use efficiency; ψmid, mid-day leaf water potential.
[1] | Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 1, 1285-1291. |
[2] | Ai SS, Li YY, Chen JC, Chen WY (2015). Root anatomical structure and hydraulic traits of three typical shrubs on the sandy lands of northern Shaanxi Province, China. Chinese Journal of Applied Ecology, 26, 3277-3284. |
[艾绍水, 李秧秧, 陈佳村, 陈伟月 (2015). 陕北沙地3种典型灌木根木质部解剖结构及水力特性. 应用生态学报, 26, 3277-3284.] | |
[3] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.
DOI PMID |
[4] | Bond W, Midgley JJ (2003). The evolutionary ecology of sprouting in woody plants. International Journal of Plant Sciences, 164, S103-S114. |
[5] |
Buckley TN, Roberts DW (2006). How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth? Tree Physiology, 26, 145-157.
PMID |
[6] | Cao JY, Liu JF, Yuan Q, Xu DY, Fan HD, Chen HY, Tan B, Liu LB, Ye D, Ni J (2020). Traits of shrubs in forests and bushes reveal different life strategies. Chinese Journal of Plant Ecology, 44, 715-729. |
[曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健 (2020). 森林与灌丛的灌木性状揭示不同的生活策略. 植物生态学报, 44, 715-729.] | |
[7] | Cao X, Li Y, Zheng XJ, Xie JB, Wang ZY (2022). An inherent coordination between the leaf size and the hydraulic architecture of angiosperm trees. Forests, 13, 1287. DOI: 10.3390/f13081287. |
[8] | Carlquist S (1977). Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64, 887-896. |
[9] | Chen JW, Zhang Q, Li XS, Cao KF (2009). Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology. Planta, 230, 459-468. |
[10] | Chen YJ, Choat B, Sterck F, Maenpuen P, Katabuchi M, Zhang SB, Tomlinson KW, Oliveira RS, Zhang YJ, Shen JX, Cao KF, Jansen S (2021). Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecology Letters, 24, 2350-2363. |
[11] | Chen ZQ (2016). Illustrated Guidebook of Changqing Forest Germplasm Resources. Shandong Science and Technology Press, Jinan. |
[陈兆强 (2016). 长清林木种质资源图鉴. 山东科学技术出版社, 济南.] | |
[12] | Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539. |
[13] | Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003). Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14, 311-322. |
[14] | Deng WP (2015). Water Use Mechanism of Typical Tree Species in Beijing Mountainous Areas. PhD dissertation, Beijing Forestry University, Beijing. |
[邓文平 (2015). 北京山区典型树种水分利用机制研究. 博士学位论文, 北京林业大学, 北京.] | |
[15] | Fan ZX, Cao KF, Zou SQ (2005). Axial and radial changes in xylem anatomical characteristics in six evergreen broadleaved tree species in Ailao Mountain, Yunnan. Acta Phytoecologica Sinica, 29, 968-975. |
[范泽鑫, 曹坤芳, 邹寿青 (2005). 云南哀牢山6种常绿阔叶树木质部解剖特征的轴向和径向变化. 植物生态学报, 29, 968-975.]
DOI |
|
[16] | Givnish TJ (1978). Ecological aspects of plant morphology: leaf form in relation to environment. Acta Biotheoretica, 27, 83-142. |
[17] | Gleason SM, Butler DW, Ziemińska K, Waryszak P, Westoby M (2012). Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Functional Ecology, 26, 343-352. |
[18] |
Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 39, 300-308.
DOI |
[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.]
DOI |
|
[19] | Gong R, Xu X, Tian XY, Jiang HL, Li X, Guan MX (2018). Hydraulic architecture characteristics and drought adaption strategies for three Caragana genus species. Acta Ecologica Sinica, 38, 4984-4993. |
[龚容, 徐霞, 田晓宇, 江红蕾, 李霞, 关梦茜 (2018). 三种锦鸡儿属植物水力结构特征及其干旱适应策略. 生态学报, 38, 4984-4993.] | |
[20] |
Gupta A, Rico-Medina A, Caño-Delgado AI (2020). The physiology of plant responses to drought. Science, 368, 266-269.
DOI PMID |
[21] | Hacke UG, Jacobsen AL, Pratt RB (2009). Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis. Plant, Cell & Environment, 32, 1324-1333. |
[22] | He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020a). Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918. |
[23] | He PC, Gleason SM, Wright IJ, Weng ES, Liu H, Zhu SD, Lu MZ, Luo Q, Li RH, Wu GL, Yan ER, Song YJ, Mi XC, Hao GY, Reich PB, et al. (2020b). Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Global Change Biology, 26, 1833-1841. |
[24] | Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD (2007). Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. Journal of Ecology, 95, 171-183. |
[25] | Jin Y (2017). Coupling Relationships of Hydraulic and Economic Traits of Leaf-stem-root for 10 Tree Species in the Temperate Forest of Northeastern China. PhD dissertation, Northeast Forestry University, Harbin. |
[金鹰 (2017). 东北温带森林10种树种叶-茎-根水力和经济性状耦联关系研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[26] |
Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032.
DOI |
[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.]
DOI |
|
[27] |
Jin Y, Wang CK (2016). Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties. Chinese Journal of Plant Ecology, 40, 702-710.
DOI |
[金鹰, 王传宽 (2016). 九种不同材性的温带树种叶水力性状及其权衡关系. 植物生态学报, 40, 702-710.]
DOI |
|
[28] | Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000). The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1465, 324-342. |
[29] |
Laanisto L, Niinemets Ü (2015). Polytolerance to abiotic stresses: How universal is the shade-drought tolerance trade-off in woody species? Global Ecology and Biogeography, 24, 571-580.
DOI PMID |
[30] | Larter M, Pfautsch S, Domec JC, Trueba S, Nagalingum N, Delzon S (2017). Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. New Phytologist, 215, 97-112. |
[31] | Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S (2022). Functional xylem characteristics associated with drought-induced embolism in angiosperms. New Phytologist, 236, 2019-2036. |
[32] | Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723. |
[33] | Li FL, Bao WK (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 22(Suppl.), 118-127. |
[李芳兰, 包维楷 (2005). 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 22(增刊), 118-127.] | |
[34] |
Li JY, Zhai HB (2000). Hydraulic architecture and drought resistance of woody plants. Chinese Journal of Applied Ecology, 11, 301-305.
PMID |
[李吉跃, 翟洪波 (2000). 木本植物水力结构与抗旱性. 应用生态学报, 11, 301-305.] | |
[35] |
Li R, Dang W, Cai J, Zhang SX, Jiang ZM (2016). Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees. Chinese Journal of Plant Ecology, 40, 255-263.
DOI |
[李荣, 党维, 蔡靖, 张硕新, 姜在民 (2016). 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报, 40, 255-263.]
DOI |
|
[36] | Li Y, Liu CC, Sack L, Xu L, Li MX, Zhang JH, He NP (2022). Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecology Letters, 25, 1442-1457. |
[37] | Li YQ, Wang ZH (2021). Leaf morphological traits: ecological function, geographic distribution and drivers. Chinese Journal of Plant Ecology, 45, 1154-1172. |
[李耀琪, 王志恒 (2021). 植物叶片形态的生态功能、地理分布与成因. 植物生态学报, 45, 1154-1172.]
DOI |
|
[38] | Li YY, Shi H, Shao MA (2010). Leaf water use efficiency and its relationship with hydraulic characteristics in eight dominant trees and shrubs in loess hilly area during vegetation succession. Scientia Silvae Sinicae, 46(2), 67-73. |
[李秧秧, 石辉, 邵明安 (2010). 黄土丘陵区乔灌木叶水分利用效率及与水力学特性关系. 林业科学, 46(2), 67-73.] | |
[39] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[40] | Liu YD, Wang XX, He LL, Liu ZY, Zeng XL, Sha HF, He BH, Jin YS, Li J, Chen JM, Guo GF, Duan J (2023). Effects of spatial structure on understory vegetation and soil properties in Pinus tabuliformis plantation of different succession types in Beijing. Acta Ecologica Sinica, 43, 1959-1970. |
[刘亚栋, 王晓霞, 和璐璐, 柳正元, 曾小莉, 沙海峰, 何宝华, 金莹杉, 李杰, 陈建梅, 郭桂凤, 段劼 (2023). 北京地区油松人工林不同演替类型空间结构对林下植被及土壤的影响. 生态学报, 43, 1959-1970.] | |
[41] | Liu YY, Wang AY, An YN, Lian PY, Wu DD, Zhu JJ, Meinzer FC, Hao GY (2018). Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. mongolica trees in plantations of Northeast China. Plant, Cell & Environment, 41, 1500-1511. |
[42] |
Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M (2007). The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247, 788-803.
PMID |
[43] | Luo WX, Liu GQ, Li JY (2007). Breeding Techniques for Major Tree Species in Northwest China. China Forestry Publishing House, Beijing. |
[罗伟祥, 刘广全, 李嘉珏 (2007). 西北主要树种培育技术. 中国林业出版社, 北京.] | |
[44] |
Lusk CH, Grierson ERP, Laughlin DC (2019). Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency. New Phytologist, 223, 1319-1327.
DOI PMID |
[45] | Ma WT, Tcherkez G, Wang XM, Schäufele R, Schnyder H, Yang YS, Gong XY (2021). Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytologist, 229, 1326-1338. |
[46] |
Maurel C, Nacry P (2020). Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants, 6, 744-749.
DOI PMID |
[47] |
McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. The American Naturalist, 175, 447-460.
DOI PMID |
[48] | Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Functional Ecology, 28, 810-818. |
[49] | Niu CY, Shou WK, Yang XT, Qian JQ, Yang JT (2023). Branch-leaf functional traits and adaptation strategies of three shrubs on the southern foot of Taihang Mountains, North China. Journal of Arid Land Resources and Environment, 37(12), 123-130. |
[牛存洋, 寿文凯, 杨喜田, 钱建强, 杨建涛 (2023). 太行山南麓3种典型灌木枝-叶功能性状及其适应策略. 干旱区资源与环境, 37(12), 123-130.] | |
[50] | Pan TT, Li Y, Wang ZY, Lu ST, Ye LF, Chen S, Xie JB (2020). Relationship between the hydraulic function and the anatomical structure of branch and root xylem in three Taxodiaceae species in humid area. Scientia Silvae Sinicae, 56(12), 49-59. |
[潘天天, 李彦, 王忠媛, 陆世通, 叶琳峰, 陈森, 谢江波 (2020). 湿润区3种杉科植物枝和根木质部的水力功能与解剖结构的关系. 林业科学, 56(12), 49-59.] | |
[51] | Pan YP, Chen YP (2014). Recent advances in leaf hydraulic traits. Chinese Journal of Ecology, 33, 2834-2841. |
[潘莹萍, 陈亚鹏 (2014). 叶片水力性状研究进展. 生态学杂志, 33, 2834-2841.] | |
[52] | Pandey S (2021). Climatic influence on tree wood anatomy: a review. Journal of Wood Science, 67, 24. DOI: 10.1186/s10086-021-01956-w. |
[53] |
Pittermann J, Sperry J (2003). Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiology, 23, 907-914.
PMID |
[54] | Pratt RB, Jacobsen AL, Percolla MI, de Guzman ME, Traugh CA, Tobin MF (2021). Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling. Proceedings of the National Academy of Sciences of the United States of America, 118, e2104336118. DOI: 10.1073/pnas.2104336118. |
[55] | Reich PB (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[56] | Ren JP, Li JP, Wang WF, Dai YX, Wang L (2021). Responses of leaf hydraulic traits to water conditions in eight tree species and the driving factors. Chinese Journal of Plant Ecology, 45, 942-951. |
[任金培, 李俊鹏, 王卫锋, 代永欣, 王林 (2021). 八个树种叶水力性状对水分条件的响应及其驱动因素. 植物生态学报, 45, 942-951.]
DOI |
|
[57] |
Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000.
DOI PMID |
[58] | Sack L, Scoffoni C, Mckown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837. DOI: 10.1038/ncomms1835. |
[59] |
Sala OE, Lauenroth WK, Parton WJ, Trlica MJ (1981). Water status of soil and vegetation in a shortgrass steppe. Oecologia, 48, 327-331.
DOI PMID |
[60] | Santiago LS, Wright SJ (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21, 19-27. |
[61] |
Scholz A, Klepsch M, Karimi Z, Jansen S (2013). How to quantify conduits in wood? Frontiers in Plant Science, 4, 56. DOI: 10.3389/fpls.2013.00056.
PMID |
[62] | Sendall KM, Lusk CH, Reich PB (2016). Trade-offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Functional Ecology, 30, 845-855. |
[63] |
Smith DD, Sperry JS, Adler FR (2017). Convergence in leaf size versus twig leaf area scaling: Do plants optimize leaf area partitioning? Annals of Botany, 119, 447-456.
DOI PMID |
[64] | Song HQ, Ni MY, Zhu SD (2020). Hydraulic and photosynthetic characteristics differ between co-generic tree and liana species: a case study of Millettia and Gnetum in tropical forest. Chinese Journal of Plant Ecology, 44, 192-204. |
[宋慧清, 倪鸣源, 朱师丹 (2020). 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例. 植物生态学报, 44, 192-204.]
DOI |
|
[65] |
Sperry JS (2004). Coordinating stomatal and xylem functioning—An evolutionary perspective. New Phytologist, 162, 568-570.
DOI PMID |
[66] |
Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93, 1490-1500.
DOI PMID |
[67] | Sperry JS, Stiller V, Hacke UG (2003). Xylem hydraulics and the soil-plant-atmosphere continuum: opportunities and unresolved issues. Agronomy Journal, 95, 1362-1370. |
[68] | Sun SJ, Meng P, Zhang JS, Jia CR, Ren YF (2014). Ecosystems water use patterns of Quercus variabilis and Grewia biloba based on stable hydrogen and oxygen isotopes in the south aspect of Taihang Mountains. Acta Ecologica Sinica, 34, 6317-6325. |
[孙守家, 孟平, 张劲松, 贾长荣, 任迎丰 (2014). 太行山南麓山区栓皮栎-扁担杆生态系统水分利用策略. 生态学报, 34, 6317-6325.] | |
[69] | Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345-360. |
[70] | Valladares F, Laanisto L, Niinemets Ü, Zavala MA (2016). Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecology & Diversity, 9, 237-251. |
[71] | Wang QW, Liu CG, Robson TM, Hikosaka K, Kurokawa H (2021). Leaf density and chemical composition explain variation in leaf mass area with spectral composition among 11 widespread forbs in a common garden. Physiologia Plantarum, 173, 698-708. |
[72] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Philip PK, Groom PK, Gulias J, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[73] | Wu BD, Liu J, Jiang K, Zhou JW, Wang CY (2019). Differences in leaf functional traits between simple and compound leaves of Canavalia maritime. Polish Journal of Environmental Studies, 28, 1425-1432. |
[74] | Xing DK, Mao RL, Li ZY, Wu YY, Qin XJ, Fu WG (2022). Leaf intracellular water transport rate based on physiological impedance: a possible role of leaf internal retained water in photosynthesis and growth of tomatoes. Frontiers in Plant Science, 13, 845628. DOI: 10.3389/fpls.2022.845628. |
[75] | Xiong DL (2016). Coordination of Leaf Morpho-anatomical Traits, Phoyosynthesis and Leaf Hudraulic Conductance in Oryza. PhD dissertation, Huazhong Agricultural University, Wuhan. |
[熊栋梁 (2016). 水稻叶片结构对水力导度与光合作用的影响及其机理. 博士学位论文, 华中农业大学, 武汉.] | |
[76] | Yan CL, Ni MY, Cao KF, Zhu SD (2020). Leaf hydraulic safety margin and safety-efficiency trade-off acrossangiosperm woody species. Biology Letters, 16, 20200456. DOI: 10.1098/rsbl.2020.0456. |
[77] |
Yang D, Zhang YJ, Song J, Niu CY, Hao GY (2019). Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China. Tree Physiology, 39, 729-739.
DOI PMID |
[78] | Yao GQ, Nie ZF, Turner NC, Li FM, Gao TP, Fang XW, Scoffoni C (2021). Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation. New Phytologist, 229, 230-244. |
[79] | Zhang J, Zhao CZ, Li XP, Ren Y, Lei L (2018). The relationship between the net photosynthetic rate and leaf area and thickness of Phragmites australis in the grass lake wetlands of Jiayuguan. Acta Ecologica Sinica, 38, 6084-6091. |
[张晶, 赵成章, 李雪萍, 任悦, 雷蕾 (2018). 嘉峪关草湖湿地芦苇净光合速率与叶面积和叶厚度的关系. 生态学报, 38, 6084-6091.] | |
[80] | Zhang M, Gao HR, Mo WY, Chen S, Zhu R, Wang XC, Wang ZB, Li DY, Wang RL (2022). Variation in leaf vein traits along environmental gradient in Loess Plateau grasslands. Acta Ecologica Sinica, 42, 8082-8093. |
[张明, 高慧蓉, 莫惟轶, 陈爽, 朱荣, 王小春, 王志波, 李丹洋, 王瑞丽 (2022). 黄土高原草地植物叶脉性状沿环境梯度的变化规律. 生态学报, 42, 8082-8093.] | |
[81] | Zhao YY, Cheng JM, Wan HE, Hu XM (2009). Water holding characteristics of the forest floor in Liupan Mountain. Scientia Silvae Sinicae, 45(4), 145-150. |
[赵艳云, 程积民, 万惠娥, 胡相明 (2009). 六盘山不同森林群落地被物的持水特性. 林业科学, 45(4), 145-150.] | |
[82] | Zhu WR (2022). The Water and Nutrient Adaptive Strategies of Dominant Species in the Hilly Area of the Taihang Mountain. PhD dissertation, Institute of Geographic Sciences and Natural Resources research, Beijing. |
[朱婉芮 (2022). 太行山低山丘陵区优势植物的水分和养分适应策略. 博士学位论文, 中国科学院地理科学与资源研究所, 北京.] | |
[83] | Zimmermann MH (1983). Xylem Structure and the Ascent of Sap. Springer Verlag, Berlin. |
[1] | 童金莲, 张博纳, 汤璐瑶, 叶琳峰, 李姝雯, 谢江波, 李彦, 王忠媛. C4植物狗尾草功能性状网络沿降水梯度带的区域分异规律[J]. 植物生态学报, 2025, 49(预发表): 1-. |
[2] | 李新貌, 金光泽, 刘志理. 毛榛“小枝系统”生长与防御策略的季节动态和器官差异[J]. 植物生态学报, 2025, 50(化学计量与功能性状): 0-. |
[3] | 郝雅昕, 金光泽, 刘志理. 不同生长季阶段和枝龄对常绿针叶树种枝性状影响[J]. 植物生态学报, 2025, 50(化学计量与功能性状): 0-. |
[4] | 戴丽君, 向玲艺, 蹇陈, 王晓锋. 三峡回水扰动增强了入库小流域河岸带典型草本植物功能性状的局域分化[J]. 植物生态学报, 2025, 50(化学计量与功能性状): 1-. |
[5] | 李港墩, 钱尼澎, 王林旭, 董淳超, 刘琪璟. 长白山红松和春榆径向生长季节动态对环境因子的响应[J]. 植物生态学报, 2025, 49(7): 1110-1118. |
[6] | 王世松, 曲孝云, 董劭琼, 李佳鸿, 杨琦, 侯满福, 赵利清, 郭柯, 刘长成, 胥晓. 西藏札达典型荒漠植被类型及群落特征[J]. 植物生态学报, 2025, 49(5): 801-812. |
[7] | 李姝雯, 汤璐瑶, 张博纳, 叶琳峰, 童金莲, 谢江波, 李彦, 王忠媛. 降水梯度带榆树枝叶协作关系的区域分异规律[J]. 植物生态学报, 2025, 49(2): 282-294. |
[8] | 李思雨, 杨风亭, 王辉民, 戴晓琴, 孟盛旺. 杉木和木荷木质部形成季节动态及其对环境因子的响应[J]. 植物生态学报, 2025, 49(2): 295-307. |
[9] | 吴风燕, 吴永胜, 陈晓涵, 冯骥, 卢丽媛, 查斯娜, 王超宇, 孟元发, 尹强. 鄂尔多斯高原3种固沙灌木水分利用效率的时空变化特征[J]. 植物生态学报, 2024, 48(9): 1180-1191. |
[10] | 钱尼澎, 高浩鑫, 宋超杰, 董淳超, 刘琪璟. 长白山白桦径向生长季节动态及其对环境因子的响应[J]. 植物生态学报, 2024, 48(8): 1001-1010. |
[11] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[12] | 王小林, 周维, 赵梅, 丁钰桐, 杨冬梅, 张吟霜, 尹梦琪, 庄悦, 彭国全. 雷竹和青皮竹导管结构的轴向变化[J]. 植物生态学报, 2024, 48(7): 915-929. |
[13] | 马琳, 巢林, 何雨莎, 李忠国, 王爱华, 刘晟源, 胡宝清, 刘艳艳. 热带喀斯特季节性雨林12个树种木质部栓塞抗性与其解剖结构及相关性状间的关系[J]. 植物生态学报, 2024, 48(7): 888-902. |
[14] | 常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[15] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19