植物生态学报 ›› 2013, Vol. 37 ›› Issue (1): 80-92.DOI: 10.3724/SP.J.1258.2013.00009
所属专题: 碳储量
• 综述 • 上一篇
收稿日期:
2012-08-06
接受日期:
2012-12-10
出版日期:
2013-08-06
发布日期:
2013-01-15
通讯作者:
平晓燕
作者简介:
*E-mail:pingxy@gmail.com基金资助:
PING Xiao-Yan*(), WANG Tie-Mei, LU Xin-Shi
Received:
2012-08-06
Accepted:
2012-12-10
Online:
2013-08-06
Published:
2013-01-15
Contact:
PING Xiao-Yan
摘要:
农林复合系统是解决当前资源枯竭、农林用地紧张和实现环境保护的一种可持续土壤管理模式。自《京都议定书》签订以来, 农林复合系统因其较高的固碳潜力引起了科学家的广泛关注。深入理解农林复合系统的固碳过程及其对气候变化、环境条件的改变和管理措施的响应, 是准确地预测农林复合系统在全球变化情景下固碳潜力的关键。该文综述了农林复合系统的概念和分类, 探讨了农林复合系统相比单一系统的固碳潜力及固碳机理, 分析了农林复合系统固碳潜力的测定方法和当前面临的挑战, 综述了气候因子、环境条件和人为管理措施对农林复合系统固碳潜力的影响。我国农林复合系统的固碳潜力相比全球其他区域还处于较低水平, 为提高我国农林复合系统的固碳潜力, 未来需要加强以下四个方面的工作: 扩大农林复合系统的分布面积、加强农林复合系统的合理配置和管理、选择适宜的物种组合和优化系统的群体结构。
平晓燕, 王铁梅, 卢欣石. 农林复合系统固碳潜力研究进展. 植物生态学报, 2013, 37(1): 80-92. DOI: 10.3724/SP.J.1258.2013.00009
PING Xiao-Yan, WANG Tie-Mei, LU Xin-Shi. Review of advances in carbon sequestration potential of agroforestry. Chinese Journal of Plant Ecology, 2013, 37(1): 80-92. DOI: 10.3724/SP.J.1258.2013.00009
区域 Region | 农林复合系统类型 Agroforestry type | 固碳速率 Carbon sequestration rate (Mg C·hm-2·a-1) | 估算时间 Calculation time (a) | 分布面积 Distribution area (Mhm2) | 固碳潜力 Carbon sequestration potential | 参考文献 Reference | |
---|---|---|---|---|---|---|---|
全球World | 农林复合型 Agroforestry | 0.72 | 50 | 585-1 215 | 1.2-2.2 Pg C?a-1 | ||
非洲 Africa | 加纳 Ghana | 农林复合型 Agroforestry | 0.34-2.32 | 38 | 2.5 | 0.85-5.8 Tg C?a-1 | |
喀麦隆 Cameroon | 农林复合型 Agroforestry | 0.53-1.93 | 30 | 1.6 | 0.85-3.09 Tg C?a-1 | ||
东非 East Africa | 农林复合型 Agroforestry | 0.4-0.8 | 20-25 | ||||
南非 South Africa | 农林复合型 Agroforestry | 0.5-1.2 | 6-25 | ||||
西非撒哈拉 West Africa Sahel | 农林牧复合型Agrisilvicultural | 0.4 | 50 | 27.87 | 11.15 Tg C?a-1 | ||
农林复合型 Agroforestry | 4.17 | 10 | |||||
林牧复合型 Silvopastoral | 0.22-0.4 | 50 | |||||
南美洲 South America | 墨西哥 Mexico | 农林复合型 Agroforestry | 0.55 | 38 | 1.9 | 1.04 Tg C?a-1 | |
湿润热带低地 Humid tropical lowland | 农林复合型 Agroforestry | 0.78-2.04 | 50 | ||||
干旱低地 Dry lowland | 农林复合型 Agroforestry | 0.78-3.9 | 50 | ||||
澳大利亚Australia | 湿润热带低地 Humid tropical lowland | 林牧复合型 Silvopastoral | 0.56-1.02 | 50 | |||
北美洲 North America | 湿润热带高地 Humid tropical highland | 林牧复合型 Silvopastoral | 2.68-3.08 | 50 | |||
干旱低地 Dry lowland | 林牧复合型 Silvopastoral | 1.8-3.5 | 50 | ||||
美国 USA | 植物篱 Alley cropping | 3.4 | 10 | 80 | 272 Tg C?a-1 | ||
林牧复合型 Silvopastoral | 6.1 | 77.7 | 474 Tg C?a-1 | ||||
防风带型 Windbreaks | 0.97 | 20 | 8.95 | 8.6 Tg C?a-1 | |||
河岸缓冲区 Riparian buffer | 2.6 | 50 | 1.69 | 4.7 Tg C?a-1 | |||
加拿大 Canada | 农林复合型 Agroforestry | 16.10 | 13 | ||||
农林复合型 Agroforestry | 4.00 | 13 | |||||
亚洲 Asia | 蒙古 Mongolia | 农林复合型 Agroforestry | 0.33 | 30 | |||
南亚和东南亚 South and southeast Asian | 庭院复合型 Homegarden | 8.0 | 8.0 | 64 Tg C?a-1 | |||
中国 China | 农林复合型 Agroforestry | 0.5 | 30 | 75.9 | 37.95 Tg C?a-1 | ||
巴基斯坦 Pakistan | 农林复合型 Agroforestry | 0.99 | 30 | 1.2 | 1.19 Tg C?a-1 | ||
印度 India | 农林复合型 Agroforestry | 0.85 | 30 | 96.0 | 81.3 Tg C?a-1 | ||
印度 India | 农林复合型 Agroforestry | 0.52-2.06 | 9 | ||||
印度 India | 林牧复合型 Silvopastoral | 1.96 | 9 |
表1 全球不同区域农林复合系统的固碳潜力
Table 1 Carbon sequestration potential of agroforestry in different regions around the world
区域 Region | 农林复合系统类型 Agroforestry type | 固碳速率 Carbon sequestration rate (Mg C·hm-2·a-1) | 估算时间 Calculation time (a) | 分布面积 Distribution area (Mhm2) | 固碳潜力 Carbon sequestration potential | 参考文献 Reference | |
---|---|---|---|---|---|---|---|
全球World | 农林复合型 Agroforestry | 0.72 | 50 | 585-1 215 | 1.2-2.2 Pg C?a-1 | ||
非洲 Africa | 加纳 Ghana | 农林复合型 Agroforestry | 0.34-2.32 | 38 | 2.5 | 0.85-5.8 Tg C?a-1 | |
喀麦隆 Cameroon | 农林复合型 Agroforestry | 0.53-1.93 | 30 | 1.6 | 0.85-3.09 Tg C?a-1 | ||
东非 East Africa | 农林复合型 Agroforestry | 0.4-0.8 | 20-25 | ||||
南非 South Africa | 农林复合型 Agroforestry | 0.5-1.2 | 6-25 | ||||
西非撒哈拉 West Africa Sahel | 农林牧复合型Agrisilvicultural | 0.4 | 50 | 27.87 | 11.15 Tg C?a-1 | ||
农林复合型 Agroforestry | 4.17 | 10 | |||||
林牧复合型 Silvopastoral | 0.22-0.4 | 50 | |||||
南美洲 South America | 墨西哥 Mexico | 农林复合型 Agroforestry | 0.55 | 38 | 1.9 | 1.04 Tg C?a-1 | |
湿润热带低地 Humid tropical lowland | 农林复合型 Agroforestry | 0.78-2.04 | 50 | ||||
干旱低地 Dry lowland | 农林复合型 Agroforestry | 0.78-3.9 | 50 | ||||
澳大利亚Australia | 湿润热带低地 Humid tropical lowland | 林牧复合型 Silvopastoral | 0.56-1.02 | 50 | |||
北美洲 North America | 湿润热带高地 Humid tropical highland | 林牧复合型 Silvopastoral | 2.68-3.08 | 50 | |||
干旱低地 Dry lowland | 林牧复合型 Silvopastoral | 1.8-3.5 | 50 | ||||
美国 USA | 植物篱 Alley cropping | 3.4 | 10 | 80 | 272 Tg C?a-1 | ||
林牧复合型 Silvopastoral | 6.1 | 77.7 | 474 Tg C?a-1 | ||||
防风带型 Windbreaks | 0.97 | 20 | 8.95 | 8.6 Tg C?a-1 | |||
河岸缓冲区 Riparian buffer | 2.6 | 50 | 1.69 | 4.7 Tg C?a-1 | |||
加拿大 Canada | 农林复合型 Agroforestry | 16.10 | 13 | ||||
农林复合型 Agroforestry | 4.00 | 13 | |||||
亚洲 Asia | 蒙古 Mongolia | 农林复合型 Agroforestry | 0.33 | 30 | |||
南亚和东南亚 South and southeast Asian | 庭院复合型 Homegarden | 8.0 | 8.0 | 64 Tg C?a-1 | |||
中国 China | 农林复合型 Agroforestry | 0.5 | 30 | 75.9 | 37.95 Tg C?a-1 | ||
巴基斯坦 Pakistan | 农林复合型 Agroforestry | 0.99 | 30 | 1.2 | 1.19 Tg C?a-1 | ||
印度 India | 农林复合型 Agroforestry | 0.85 | 30 | 96.0 | 81.3 Tg C?a-1 | ||
印度 India | 农林复合型 Agroforestry | 0.52-2.06 | 9 | ||||
印度 India | 林牧复合型 Silvopastoral | 1.96 | 9 |
[1] | Albrecht A, Kandji ST (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 99, 15-27. |
[2] | Archer S, Boutton TW, Hibbard KA (2001). Trees in grasslands: biogeochemical consequences of woody plant expansion. In: Schulze ED, Harrison SP, Heimann M, Holland EA, Lloyd J, Prentice IC, Schimel D eds. Global Biogeochemical Cycles in the Climate System. Academic Press, San Diego, USA. 115-138. |
[3] | Bombelli A, Henry M, Castaldi S, Adu-Bredu S, Arneth A, de Grandcourt A, Grieco E, Kutsch WL, Lehsten V, Rasile A, Reichstein M, Tansey K, Weber U, Valentini R (2009). An outlook on the Sub-Saharan Africa carbon balance. Biogeosciences, 6, 2193-2205. |
[4] | Bradford JBBJB, Kastendick DNKDN (2010). Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA. Canadian Journal of Forest Research, 40, 401-409. |
[5] | Bronick CJ, Lal R (2005). Soil structure and management: a review. Geoderma, 124, 3-22. |
[6] | Cannell MGR (2003). Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass and Bioenergy, 24, 97-116. |
[7] | Dagang ABK (2007). Establishment of Silvopastoral Systems in Degraded, Grazed Pastures: Tree Seedling Survival and Forage Production under Trees in Panama. PhD dissertation, University of Florida, Florida, USA. |
[8] | Dagang ABK, Nair PKR (2003). Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agroforestry Systems, 59, 149-155. |
[9] | Ding SW, Wang F, Cai CF, Shi ZH, Peng YX, Jiang C, Zhang GY (2004). Effects of two hedgerows species on nutrients uptake for crops. Resources Science, 26, 156-160.(in Chinese with English abstract) |
[ 丁树文, 王峰, 蔡崇法, 史志华, 彭业轩, 姜成, 张光远 (2004). 两种绿篱植物对作物养分吸收的影响. 资源科学, 26, 156-160.] | |
[10] | Dixon RK (1995). Agroforestry systems: sources of sinks of greenhouse gases? Agroforestry Systems, 31, 99-116. |
[11] | Dube F, Espinosa M, Stolpe NB, Zagal E, Thevathasan NV, Gordon AM (2012). Productivity and carbon storage in silvopastoral systems with Pinus ponderosa and Trifolium spp., plantations and pasture on an Andisol in Patagonia, Chile. Agroforestry Systems, 86, 113-128. |
[12] | Ellis EA, Bentrup G, Schoeneberger MM (2004). Computer- based tools for decision support in agroforestry: current state and future needs. Agroforestry Systems, 61-62, 401-421. |
[13] | Fan W, Gao XR (2004). Research advances on the silvopastoral system. Forest Research, 17, 519-524.(in Chinese with English abstract) |
[ 樊巍, 高喜荣 (2004). 林草牧复合系统研究进展. 林业科学研究, 17, 519-524.] | |
[14] |
Gama-Rodrigues EF, Nair PKR, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RCR (2010). Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environmental Management, 45, 274-283.
DOI URL |
[15] | Garcia-Oliva F, Masera OR (2004). Assessment and measurement issues related to soil carbon sequestration in land-use, land-use change, and forestry (LULUCF) projects under the Kyoto Protocol. Climatic Change, 65, 347-364. |
[16] | Gordon AM, Jose S (2008). Applying ecological knowledge to agroforestry design: a synthesis. In: Jose S, Gordon AM eds. Toward Agroforestry Design. Springer, Dordrecht, The Netherlands. 301-306. |
[17] |
Gordon AM, Newman SM (1997). Temperate Agroforestry Systems. CAB International, New York.
URL PMID |
[18] | Haile SG, Nair VD, Nair PKR (2010). Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Global Change Biology, 16, 427-438. |
[19] | Ibrahim M, Villanueva C, Mora J (2005). Traditional and improved silvopastoral systems and their importance in sustainability of livestock farms. In: Mosquera MR, Riguerio A, McAdam J eds. Silvopastoralism and Sustainable Land Management. CAB International, Wallingford, UK. 13-18. |
[20] | ICRAF (1982). Concepts and procedures for diagnosis of existing land management systems and design of agroforestry technology: a preliminary version for comment. Collaborative and Special Projects Programme and Agroforestry Systems Programme. ICRAF, Nairobi. |
[21] | Izac AMN, Sanchez PA (2001). Towards a natural resource management paradigm for international agriculture: the example of agroforestry research. Agricultural Systems, 69, 5-25. |
[22] | Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-436. |
[23] | Jose S (2009). Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems, 76, 1-10. |
[24] | Kaur B, Gupta SR, Singh G (2002). Carbon storage and nitrogen cycling in silvopastoral systems on a sodic in northwestern India. Agroforestry Systems, 54, 21-29. |
[25] | Kunhamu TK, Kumar BM, Samuel S (2011). Does tree management affect biomass and soil carbon stocks of Acacia mangium Willd. stands in Kerala, India? In: Kumar BM, Nair PKR eds. Carbon Sequestration Potential of Agroforestry Systems. Springer, Dordrecht, The Netherlands. 217-228. |
[26] | Kürsten E (2000). Fuelwood production in agroforestry systems for sustainable land use and CO2-mitigation. Ecological Engineering, 16, 69-72. |
[27] | Lal R (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1-22. |
[28] | Li HK, Lei YC (2010). Estimation and Evaluation of Forest Biomass Carbon Storage in China. China Forestry Publishing House, Beijing.(in Chinese) |
[ 李海奎, 雷渊才 (2010). 中国森林植被生物量和碳储量评估. 中国林业出版社. 北京.] | |
[29] | Li QY (2008). The Research on Carbon Storage of Populus- crop Intercropping System in the Huanghuaihai Plain. Master degree dissertation, Henan Agricultural University, Zhengzhou China.(in Chinese with English abstract) |
[ 李庆云 (2008). 黄淮海平原杨农间作系统碳贮量研究. 硕士学位论文. 河南农业大学, 郑州.] | |
[30] | Li WH, Lai SD (1994). Agroforestry Management in China. Science Press, Beijing.(in Chinese) |
[ 李文华, 赖世登 (1994). 中国农林复合经营. 科学出版社, 北京.] | |
[31] | Li XW, Zhang J, Hu TX, Luo CD (2009). Theory of the Conversion of Farmland to Forests and Application of Forest-Grass Mode. Science Press, Beijing.(in Chinese) |
[ 李贤伟, 张健, 胡庭兴, 罗承德 (2009). 退耕还林理论基础及林草模式的实践应用. 科学出版社, 北京.] | |
[32] | Liu XY, Zeng DH (2007). Research advances in interspecific interactions in agroforestry system. Chinese Journal of Ecology, 26, 1464-1470.(in Chinese with English abstract) |
[ 刘兴宇, 曾德慧 (2007). 农林复合系统种间关系研究进展. 生态学杂志, 26, 1464-1470.] | |
[33] | Luedeling E, Neufeldt H (2012). Carbon sequestration potential of parkland agroforestry in the Sahel. Climatic Change, 115, 443-461. |
[34] | Luedeling E, Sileshi G, Beedy T, Dietz J (2011). Carbon sequestration potential of agroforestry systems in Africa. In: Kumar BM, Nair PKR eds. Carbon Sequestration Potential of Agroforestry Systems. Springer, Dordrecht, The Netherlands. 61-83. |
[35] | Masera OR, Garza-Caligarisa JF, Kanninenb M, Karjalaineng T, Liskic J, Nabuursd GJ, Pussinenc A, de Jonge BHJ, Mohrenf GMJ (2003). Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecological Modelling, 164, 177-199. |
[36] | Menezes RSC, Salcedo IH, Elliott ET (2002). Microclimate and nutrient dynamics in a silvopastoral system of semiarid northeastern Brazil. Agroforestry Systems, 56, 27-38. |
[37] | Meng P, Zhang JS, Fan W (2003). Research on Agroforestry in China. China Forestry Publishing House, Beijing.(in Chinese) |
[ 孟平, 张劲松, 樊巍 (2003). 中国复合农林业研究. 中国林业出版社, 北京.] | |
[38] | Montagnini F, Nair PKR (2004). Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agroforestry Systems, 61, 281-295. |
[39] | Mosquera-Losada MR, Freese D, Rigueiro-Rodríguez A (2011). Carbon sequestration in European agroforestry systems. In: Kumar BM, Nair PKR eds. Carbon Sequestration Potential of Agroforestry Systems. Springer, Dordrecht, The Netherlands. 43-59. |
[40] | Nair PKR (1985). Classification of agroforestry systems. Agroforestry Systems, 3, 97-128. |
[41] | Nair PKR (1993). An Introduction to Agroforestry. Kluwer Academic Publishers, Dordrecht, The Netherlands. |
[42] | Nair PKR (2011a). Methodological challenges in estimating carbon sequestration potential of agroforestry systems. In: Kumar BM, Nair PKR eds. Carbon Sequestration Potential of Agroforestry Systems. Springer, Dordrecht, The Netherlands. 3-16. |
[43] |
Nair PKR (2011b). Agroforestry systems and environmental quality: introduction. Journal of Environmental Quality, 40, 784-790.
DOI URL PMID |
[44] | Nair PKR (2011c). Carbon sequestration studies in agroforestry systems: a reality-check. Agroforestry Systems, 86, 243-253. |
[45] | Nair PKR, Kumar BM, Nair VD (2009b). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172, 10-23. |
[46] | Nair PKR, Nair VD, Gama-Rodrigues E, Garcia R, Haile S, Howlett DS, Kumar BM, Mosquera-Losada MR, Saha S, Takimoto A, Tonucci R (2009a). Soil carbon in agroforestry systems: An unexplored treasure? http://precedings. nature.com/documents/4061/version/1. |
[47] | Nair PKR, Nair VD, Kumar BM, Haile SG (2009c). Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environmental Science & Policy, 12, 1099-1111. |
[48] | Nair PKR, Nair VD, Kumar BM, Showalter JM (2010). Carbon sequestration in agroforestry systems. Advances in Agronomy, 108, 237-307. |
[49] | Oelbermann M, Paul Voroney R, Gordon AM (2004). Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agriculture, Ecosystems & Environ- ment, 104, 359-377. |
[50] | Oelbermann M, Voroney RP, Kass DCL, Schlönvoigt AM (2005). Above- and below-ground carbon inputs in 19-, 10- and 4-year-old Costa Rican Alley cropping systems. Agriculture, Ecosystems & Environment, 105, 163-172. |
[51] | Pandey DN (2002). Carbon sequestration in agroforestry systems. Climate Policy, 2, 367-377. |
[52] | Parry ML, Canzaiani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[53] | Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006). Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agroforestry Systems, 66, 243-257. |
[54] | Power IL, Thorrold BS, Balks MR (2003). Soil properties and nitrogen availability in silvopastoral plantings of Acacia melanoxylon in North Island, New Zealand. Agroforestry Systems, 57, 225-237. |
[55] | Saha SK (2008). Carbon Sequestration Potential of Tropical Homegardens and Related Land-Use Systems in Kerala, India. PhD dissertation, University of Florida, Florida, USA. |
[56] | Sampson RN, Scholes RJ, Cerri C, Erda L, Hall DO, Handa M, Hill P, Howden M, Janzen H, Kimble J, Lal R, Marland G, Minami K, Paustian K, Read P, Sanchez PA, Scoppa C, Solberg B, Trossero MA, Trumbore S, van Cleemput O, Whitmore A, Xu D, Burrows B, Conant R, Liping G, Hall W, Kaegi W, Reyenga P, Roulet N, Skog KE, Smith GR, Wang Y (2000). Additional human-induced activities― Article 3. 4. In: Watson R, NobleI R, Bolin B, Ravindranath N, Verardo D, Dokken D eds. Land Use, Land-Use Change, and Forestry. Cambridge University Press, Cambridge, UK. 181-282. |
[57] | Sanchez PA (1995). Science in agroforestry. Agroforestry Systems, 30, 5-55. |
[58] | Sathaye JA, Ravindranath NH (1998). Climate change mitigation in the energy and forestry sectors of developing countries. Annual Review of Energy and the Environment, 23, 387-437. |
[59] |
Schoeneberger MM (2009). Agroforestry: working trees for sequestering carbon on agricultural lands. Agroforestry Systems, 75, 27-37.
DOI URL |
[60] | Schroeder P (1994). Carbon storage benefits of agroforestry systems. Agroforestry Systems, 27, 89-97. |
[61] | Schroth G (1998). A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agroforestry Systems, 43, 5-34. |
[62] | Schroth G, D’Angelo SA, Teixeira WG, Haag D, Lieberei R (2002). Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. Forest Ecology and Management, 163, 131-150. |
[63] | Sharrow SH, Ismail S (2004). Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 60, 123-130. |
[64] | Singh P, Lodhiyal LS (2009). Biomass and carbon allocation in 8-year-old poplar (Populus deltoides Marsh) plantation in Tarai agroforestry systems of Central Himalaya, India. New York Science Journal, 2, 49-53. |
[65] | Smiley G, Kroschel J (2008). Temporal change in carbon stocks of cocoa-gliricidia agroforests in Central Sulawesi, Indonesia. Agroforestry Systems, 73, 219-231. |
[66] | Smith P, Falloon P, Franko U, Körschens M, Lal R, Paustian K, Powlson D, Romanenkov V, Shevtsova L, Smith J (2007). Greenhouse gas mitigation potential in agricultural soils. In: Ganadel JG, Pataki DE, Pitelka LF eds. Terrestrial Ecosystems in a Changing World. Springer-Verlag, Berlin. 227-235. |
[67] | Srivastava P, Kumar A, Behera SK, Sharma YK, Singh N (2012). Soil carbon sequestration: an innovative strategy for reducing atmospheric carbon dioxide concentration. Biodiversity and Conservation, 21, 1343-1358. |
[68] | Takimoto A (2007). Carbon Sequestration Potential of Agroforestry Systems in the West African Sahel: An Assessment of Biological and Socioeconomic Feasibility. PhD dissertation, University of Florida, Florida, USA. |
[69] | Takimoto A, Nair VD, Nair PKR (2009). Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel. Agroforestry Systems, 76, 11-25. |
[70] | Thangata PH, Hildebrand PE (2012). Carbon stock and sequ- estration potential of agroforestry systems in smallholder agroecosystems of sub-Saharan Africa: mechanisms for ‘reducing emissions from deforestation and forest degradation’ (REDD+). Agriculture, Ecosystems & Environment, 158, 172-183. |
[71] | Udawatta RP, Jose S (2011). Carbon sequestration potential of agroforestry practices in temperate North America. In: Kumar BM, Nair PKR eds. Carbon Sequestration Potential of Agroforestry Systems. Springer, Dordrecht, The Netherlands. 17-42. |
[72] | Udawatta RP, Jose S (2012). Agroforestry strategies to sequ- ester carbon in temperate North America. Agroforestry Systems, 86, 225-242. |
[73] | van’t Veld K, Plantinga A (2005). Carbon sequestration or abatement? The effect of rising carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies. Journal of Environmental Economics and Management, 50, 59-81. |
[74] | Wan M, Tian DL, Fan W, Li QY (2009). Biomass production and carbon sequestration in poplar-crop agroforestry ecosystems in eastern Henan plain. Scientia Silvae Sinicae, 45, 27-33.(in Chinese with English abstract) |
[ 万猛, 田大伦, 樊巍, 李庆云 (2009). 豫东平原杨农复合系统物质生产与碳截存. 林业科学, 45, 27-33.] | |
[75] | Ward PR, Micin SF, Fillery IRP (2012). Application of eddy covariance to determine ecosystem-scale carbon balance and evapotranspiration in an agroforestry system. Agricultural and Forest Meteorology, 152, 178-188. |
[76] | Watson R, NobleI R, Bolin B, Ravindranath N, Verardo D, Dokken D (2000). Land Use, Land-Use Change, and Forestry. Cambridge University Press, Cambridge, UK. |
[77] | Wolf S, Eugster W, Potvin C, Buchmann N (2011). Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama. Agricultural and Forest Meteorology, 151, 1139-1151. |
[78] | Xiao ZW, Wang LJ, Mao JM, Zhu XZ, Wang XL, Zheng L, Tang JW (2012). Carbon storage of different tree-tea agroforestry systems in Xishuangbanna, Yunnan Province of Southwest China. Chinese Journal of Ecology, 31, 1617-1625.(in Chinese with English abstract) |
[ 萧自位, 王丽娟, 毛加梅, 朱兴正, 王小李, 郑丽, 唐建维 (2012). 西双版纳不同林茶复合生态系统碳储量. 生态学杂志, 31, 1617-1625.] | |
[79] | Yadava AK (2010). Carbon sequestration: underexploited environmental benefits of Tarai agroforestry systems. Indian Journal of Soil Conservation, 38, 125-131. |
[80] | Yu GR, Wang QF, Liu YC, Liu YH (2011). Conceptual framework of carbon sequestration rate and potential increment of carbon sink of regional terrestrial ecosystem and scientific basis for quantitative carbon authentification. Progress in Geography, 30, 771-787.(in Chinese with English abstract) |
[ 于贵瑞, 王秋凤, 刘迎春, 刘颖慧 (2011). 区域尺度陆地生态系统固碳速率和增汇潜力概念框架及其定量认证科学基础. 地理科学进展, 30, 771-787.] | |
[81] | Zeng YQ, Lu XS (2008). Current advance and benefits of tree-grass complex system researches. Pratacultural Science, 25, 33-36.(in Chinese with English abstract) |
[ 曾艳琼, 卢欣石 (2008). 林草复合生态系统的研究现状及效益分析. 草业科学, 25, 33-36.] | |
[82] | Zhai T, Mohtar RH, Gillespie AR, von Kiparski GR, Johnson KD, Neary M (2006). Modeling forage growth in a Midwest USA silvopastoral system. Agroforestry Systems, 67, 243-257. |
[83] | Zomer RJ, Trabucco A, Coe R, Place F (2009). Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper, World Agroforestry Centre, Nairobi, Kenya. |
[84] | Zou XM, Sanford RL (1990). Agroforestry systems in China: a survey and classification. Agroforestry Systems, 11, 85-94. |
[1] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[4] | 徐干君, 吴胜义, 李伟, 赵欣胜, 聂磊超, 唐希颖, 翟夏杰. 陕西黄河湿地自然保护区碳储量估算[J]. 植物生态学报, 2023, 47(4): 469-478. |
[5] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[6] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[7] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[8] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[9] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[10] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[11] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[12] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
[13] | 张亮, 王志磊, 薛婷婷, 郝笑云, 杨晨露, 高飞飞, 王莹, 韩星, 李华, 王华. 葡萄园生态系统碳源/汇及碳减排策略研究进展[J]. 植物生态学报, 2020, 44(3): 179-191. |
[14] | 魏红, 满秀玲. 中国寒温带不同林龄白桦林碳储量及分配特征[J]. 植物生态学报, 2019, 43(10): 843-852. |
[15] | 陈科宇, 字洪标, 阿的鲁骥, 胡雷, 王根绪, 王长庭. 青海省森林乔木层碳储量现状及固碳潜力[J]. 植物生态学报, 2018, 42(8): 831-840. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19