植物生态学报 ›› 2008, Vol. 32 ›› Issue (1): 161-167.DOI: 10.3773/j.issn.1005-264x.2008.01.018
收稿日期:
2006-06-12
接受日期:
2006-10-19
出版日期:
2008-06-12
发布日期:
2008-01-30
通讯作者:
刘兆普
作者简介:
* E-mail: sea@njau.edu.cn基金资助:
Received:
2006-06-12
Accepted:
2006-10-19
Online:
2008-06-12
Published:
2008-01-30
Contact:
LIU Zhao-Pu
摘要:
以砂培菊芋(Helianthus tuberosus)幼苗作为试验材料,分别进行不同浓度NaCl (50、100、150、200、250 mmol·L-1)和Na2CO3 (25、50、75、100、125 mmol·L-1)胁迫处理,以1/2全营养液作为对照,处理7 d后研究NaCl和Na2CO3胁迫处理对菊芋幼苗叶片光合作用及叶绿素动力学参数的影响。结果表明:1)在NaCl处理下,当浓度小于150 mmol·L-1时,增加了菊芋的叶绿素含量、净光合速率(Net photosynthetic rate, Pn)和气孔导度(Stomatal conductivity, Gs),对荧光参数PSⅡ的电子传递情况(Fm/Fo)、PSⅡ原初光能转换效率(Fv/Fm)、PSⅡ量子效率(Actual quantum yield of PSⅡ under actinic irradiation, ΦPSⅡ)和光化学猝灭系数(Photochemical quenching coefficient, qP)和非光化学猝灭系数(Non-photochemical quenching coefficient, NPQ)没有显著影响,随着浓度的增加,各项生理指标与对照相比除了NPQ显著增加,其余均显著降低;2)在Na2CO3胁迫处理下,随着Na2CO3浓度的增加,与对照相比菊芋幼苗叶绿素含量、Pn、Gs以及叶绿素a荧光诱导动力学参数Fm/Fo、Fv/Fm、ΦPSⅡ和qP均显著降低,NPQ显著增加;3)就NaCl和Na2CO3相比而言,在相同Na +浓度情况下,处于Na2CO3胁迫下的菊芋幼苗的叶绿素含量、Pn、Gs以及叶绿素a荧光诱导动力学参数Fm/Fo、Fv/Fm、ΦPSⅡ和qP下降幅度和NPQ的增加幅度均显著大于NaCl,这说明NaCl和Na2CO3胁迫均对菊芋幼苗造成不同程度的伤害,但在相同Na+浓度情况下,Na2CO3的伤害程度大于NaCl。由此说明菊芋对盐的忍耐程度高于碱。
薛延丰, 刘兆普. 不同浓度NaCl和Na2CO3处理对菊芋幼苗光合及叶绿素荧光的影响. 植物生态学报, 2008, 32(1): 161-167. DOI: 10.3773/j.issn.1005-264x.2008.01.018
XUE Yan-Feng, LIU Zhao-Pu. EFFECTS OF NaCl AND Na2CO3 STRESSES ON PHOTOSYNTHESIS AND PARAMETERS OF CHLOROPHYLL FLUORESCENCE IN HELIANTHUS TUBEROSUS SEEDLINGS. Chinese Journal of Plant Ecology, 2008, 32(1): 161-167. DOI: 10.3773/j.issn.1005-264x.2008.01.018
图2 NaCl和Na2CO3 对菊芋叶片净光合速率(Pn)和气孔导度(Gs)的影响
Fig.2 Influence of NaCl and Na2CO3 on net photosynthetic rate (Pn) and stomatal conductivity (Gs) in Helianthus tuberosus leaves
Na+浓度 Na+ concentration (mmol·L-1) | |||||||
---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | 200 | 250 | ||
Fm/Fo | NaCl | 3.443±0.142 | 3.321±0.181 | 3.013±0.165 | 2.635±0.121 | 2.111±0.144 | 1.744±0.199 |
Na2CO3 | 3.443±0.142 | 2.997±0.128 | 2.241±0.131 | 1.757±0.159 | 1.486±0.154 | 1.189±0.146 | |
Fv/Fm | NaCl | 0.737±0.037 | 0.726±0.025 | 0.714±0.038 | 0.648±0.039 | 0.552±0.033 | 0.461±0.024 |
Na2CO3 | 0.737±0.037 | 0.696±0.024 | 0.579±0.035 | 0.517±0.034 | 0.437±0.025 | 0.308±0.032 | |
ΦPSⅡ | NaCl | 0.166±0.009 | 0.160±0.009 | 0.151±0.011 | 0.096±0.008 | 0.080±0.006 | 0.063±0.008 |
Na2CO3 | 0.166±0.009 | 0.143±0.006 | 0.107±0.011 | 0.080±0.006 | 0.062±0.009 | 0.037±0.006 | |
qP | NaCl | 0.316±0.013 | 0.310±0.015 | 0.291±0.018 | 0.259±0.013 | 0.219±0.014 | 0.192±0.019 |
Na2CO3 | 0.316±0.013 | 0.286±0.019 | 0.226±0.014 | 0.191±0.015 | 0.160±0.016 | 0.147±0.011 | |
NPQ | NaCl | 0.513±0.034 | 0.522±0.036 | 0.535±0.037 | 0.612±0.034 | 0.683±0.039 | 0.736±0.035 |
Na2CO3 | 0.513±0.034 | 0.596±0.039 | 0.655±0.032 | 0.718±0.038 | 0.766±0.038 | 0.817±0.034 |
表1 NaCl和Na2CO3对菊芋叶片Fm/Fo, Fv/Fm, ΦPSⅡ, qP 和 NPQ的影响(平均值±标准偏差)
Table 1 Influence of NaCl and Na2CO3 on Fm/Fo, Fv/Fm, ΦPSⅡ, qP and NPQ in Helianthus tuberosus leaves (Mean±SD)
Na+浓度 Na+ concentration (mmol·L-1) | |||||||
---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | 200 | 250 | ||
Fm/Fo | NaCl | 3.443±0.142 | 3.321±0.181 | 3.013±0.165 | 2.635±0.121 | 2.111±0.144 | 1.744±0.199 |
Na2CO3 | 3.443±0.142 | 2.997±0.128 | 2.241±0.131 | 1.757±0.159 | 1.486±0.154 | 1.189±0.146 | |
Fv/Fm | NaCl | 0.737±0.037 | 0.726±0.025 | 0.714±0.038 | 0.648±0.039 | 0.552±0.033 | 0.461±0.024 |
Na2CO3 | 0.737±0.037 | 0.696±0.024 | 0.579±0.035 | 0.517±0.034 | 0.437±0.025 | 0.308±0.032 | |
ΦPSⅡ | NaCl | 0.166±0.009 | 0.160±0.009 | 0.151±0.011 | 0.096±0.008 | 0.080±0.006 | 0.063±0.008 |
Na2CO3 | 0.166±0.009 | 0.143±0.006 | 0.107±0.011 | 0.080±0.006 | 0.062±0.009 | 0.037±0.006 | |
qP | NaCl | 0.316±0.013 | 0.310±0.015 | 0.291±0.018 | 0.259±0.013 | 0.219±0.014 | 0.192±0.019 |
Na2CO3 | 0.316±0.013 | 0.286±0.019 | 0.226±0.014 | 0.191±0.015 | 0.160±0.016 | 0.147±0.011 | |
NPQ | NaCl | 0.513±0.034 | 0.522±0.036 | 0.535±0.037 | 0.612±0.034 | 0.683±0.039 | 0.736±0.035 |
Na2CO3 | 0.513±0.034 | 0.596±0.039 | 0.655±0.032 | 0.718±0.038 | 0.766±0.038 | 0.817±0.034 |
[1] | Bjorkman O, Powles SB (1984). Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta, 161, 490-504. |
[2] | Butler WL (1997). Chlorophyll fluorescence: a probe for electron transfer and energy transfer. In: Trebst A, Avron M eds. Encyclopedia of Plant Physiology. New Series, Vol. 5 (Photosynthetic Electron Transport and Photophosphorylation). Springer, Berlin, 149-167. |
[3] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta Biochim, 990, 87-92. |
[4] | Li DM (李德明), Zhu ZJ (朱祝军), Liu YH (刘永华), Wang YQ (王玉清) (2005). Influence of cadmium on photosynthesis of Brassica campestris ssp. chinensis L. Journal of Zhejiang University (Agriculture & Life Sciences Edition) (浙江大学学报(农业与生命科学版)), 31, 459-464. (in Chinese with English abstract) |
[5] | Liang XH (梁新华), Xu X (许兴), Xu ZZ (徐兆桢), Qiu ZX (裘志新), Shi HJ (时海娟) (2001). Study on the relation between the effects of water stress on the flag leaf chlorophyll a fluorescence induction kinetics and the yields of spring wheat genotypes in late growth season. Agricultural Research in the Arid Areas (干旱地区农业研究), 19(3), 72-77. (in Chinese with English abstract) |
[6] | Liu JF (刘建福), Tang QL (汤青林), Ni SB (倪书邦), Wang LN (王丽娜) (2003). Effect of water stress on the kinetic parameter of fluorescence in chlorophyll a of macadamia. Journal of Huaqiao University (Natural Science Edition) (华侨大学学报(自然科学版)), 24, 305-309. (in Chinese with English abstract) |
[7] | Mac Robbie EAC (1997). Signalling in guard cells and regulation of ion channel activity. Journal of Experimental Botany, 48, 515-528. |
[8] | Mao GL (毛桂莲), Xu X (许兴), Yang J (杨涓) (2004). Stress effect of NaCl and Na2CO3 on medlar (Lycium bararum L.) seedlings. Agricultural Research in the Arid Areas (干旱地区农业研究), 22(2), 100-104. (in Chinese with English abstract) |
[9] | Monti A, Amaducci MT, Venturi G (2005). Growth response, leaf gas exchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L.) as affected by different water regimes. European Journal of Agronomy, 23, 136-145. |
[10] | Qu YG (曲元刚), Zhao KF (赵可夫) (2004). Comparative studies on growth and physiological reaction of Zea mays under NaCl and Na2CO3 stresses. Acta Agronomica Sinica (作物学报), 30, 334-341. (in Chinese with English abstract) |
[11] | Ruban AV, Horton P (1995). Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. Australian Journal of Plant Physiology, 22, 221-230. |
[12] | Sayed OH (2003). Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41, 321-330. |
[13] | Schreiber U, Schliwa U, Bilger W (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10, 51-62. |
[14] | Shi DC (石德成), Sheng YM (盛彦敏), Zhao KF (赵可夫) (2002). Dominant acting factors determination for salt and alkali mixed stresses in the seedlings of sunflower. Acta Agronomica Sinica (作物学报), 28, 461-467. (in Chinese with English abstract) |
[15] | Shi DC, Sheng YM (2005). Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental and Experimental Botany, 54, 8-21. |
[16] | Shi QH (史庆华), Zhu ZJ (朱祝军), Al-aghabary K, Qian QQ (钱琼秋) (2004). Effects of iso-osmotic Ca(NO3)2 and NaCl treatment on photosynthesis in leaves of tomato. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 10, 188-191. (in Chinese with English abstract) |
[17] | van Kooten O, Snel JFH (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25, 147-150. |
[18] | Vestergaard O, Sand-Jensen K (2000). Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany, 67, 85-107. |
[19] | Wang KB (王可玢), Xu CH (许春辉), Zhao FH (赵福洪), Tang CQ (唐崇钦), Dai YL (戴云玲) (1997). The effects of water stress on some in vivo chlorophyll a fluorescence parameters of wheat flag leaves. Acta Biophysica Sinica (生物物理学报), 13, 273-278. (in Chinese with English abstract) |
[20] | Wellburn AR (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313. |
[21] | Willekens H, Van Camp W, van Montagu M, Inzé D, Langebartels C, Sandermann H Jr (1994). Ozone, sulfur dioxide, and ultraviolet-B have similar effect on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiology, 106, 1007-1014. |
[22] | Yin SJ (尹尚军) (2002). Comparison of effect between saline (NaCl) and alkaline (Na2CO3) stress on water cultured wheat seedling. Journal of Zhejiang Wanli University (浙江万里学院学报), 15(1), 54-57. (in Chinese with English abstract) |
[23] | Zhang NH (张乃华), Gao HY (高辉远), Zou Q (邹琦) (2005). Effect of calcium on alleviation of decreased photosynthetic ability in salt stressed maize leaves. Acta Phytoecologica Sinica (植物生态学报), 29, 324-330. (in Chinese with English abstract) |
[24] | Zhang SR (张守仁) (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany (植物学通报), 16, 444-448. (in Chinese with English abstract) |
[25] | Zhang XC (张新春), Zhuang BC (庄炳昌), Li ZC (李自超) (2002). Advances in study of salt-stress tolerance in plants. Maize Sciences (玉米科学), 10(1), 50-56. (in Chinese with English abstract) |
[26] | Zhao HJ, Zou Q (2002). Protective effects of exogenous anti-oxidants and phenolic compounds on photosynthesis of wheat leaves under high irradiance and oxidative stress. Photosynthetica, 40, 523-527. |
[27] | Zhou F (周芬), Zeng CL (曾长立), Wang JB (王建波) (2004). Influence of calcium on alleviating NaCl-induced injury effects in Arabidopsis thaliana seedlings. Journal of Wuhan Botanical Research (武汉植物学研究), 22, 179-182. (in Chinese with English abstract) |
[28] | Zhu XG (朱新广), Zhang QD (张其德), Kuang TY (匡廷云) (1999). Effects of NaCl stress on light utilization and dissipation of PSⅡ. Acta Biophysica Sinica (生物物理学报), 15, 788-791. (in Chinese with English abstract) |
[29] | Zhu XG (朱新广), Zhang QD (张其德), Kuang TY (匡廷云) (2000). Damage to photosynthetic functions of wheat by NaCl results mainly from its ionic effect. Chinese Bulletin of Botany (植物学通报), 17, 360-365. (in Chinese with English abstract) |
[1] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[2] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[3] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[4] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[5] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[6] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[7] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[8] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[9] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[10] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[11] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[12] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[13] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[14] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[15] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19