植物生态学报 ›› 2008, Vol. 32 ›› Issue (6): 1301-1311.DOI: 10.3773/j.issn.1005-264x.2008.06.011
所属专题: 生态系统碳水能量通量
收稿日期:
2008-02-20
接受日期:
2008-06-25
出版日期:
2008-02-20
发布日期:
2008-11-30
通讯作者:
林光辉
作者简介:
*(ghlin@ibcas.ac.cn)基金资助:
ZHANG Wen-Li1,2, CHEN Shi-Ping2, MIAO Hai-Xia2, LIN Guang-Hui2,*()
Received:
2008-02-20
Accepted:
2008-06-25
Online:
2008-02-20
Published:
2008-11-30
Contact:
LIN Guang-Hui
摘要:
植被-大气间CO2净交换及其对环境变化的响应是目前全球变化研究的热点问题。该研究通过同化箱式法, 在内蒙古农牧交错带对比研究生长季草地生态系统和耕种多年的小麦田生态系统碳通量的变化, 以探讨该地区碳通量的变化规律及影响碳通量主要因子, 并揭示农田开垦对草原碳通量的影响。结果显示: 两个生态系统的群落净气体交换(Net ecosystem exchange, NEE)有明显的季节变化。整个测定期间, 草地生态系统的净气体交换NEE的最高值为-11.26 µmol CO 2·m-2·s-1, 平均群落净气体交换为-5.33 µmol CO 2·m-2·s-1; 小麦田群落NEE最大值为-12.29 µmol CO 2·m-2·s-1, 平均群落净气体交换为-7.66 µmol CO 2·m-2·s-1。分析发现, 叶面积指数LAI是影响该地区生态系统NEE的主要因子, 相对贫瘠的土壤也是限制该地区生态系统碳固定的一个重要因子。因小麦的生长特性, 在生长中后期, 小麦田生态系统NEE随LAI的变化没有草地生态系统的敏感。此外, 较低的土壤含水量限制了小麦田群落呼吸, 使得小麦田群落呼吸对温度的敏感性降低。
张文丽, 陈世苹, 苗海霞, 林光辉. 开垦对克氏针茅草地生态系统碳通量的影响. 植物生态学报, 2008, 32(6): 1301-1311. DOI: 10.3773/j.issn.1005-264x.2008.06.011
ZHANG Wen-Li, CHEN Shi-Ping, MIAO Hai-Xia, LIN Guang-Hui. EFFECTS ON CARBON FLUX OF CONVERSION OF GRASSLAND STEPPE TO CROPLAND IN CHINA. Chinese Journal of Plant Ecology, 2008, 32(6): 1301-1311. DOI: 10.3773/j.issn.1005-264x.2008.06.011
图1 2006年生长季草地和小麦田生态系统主要环境因子的季节变化 DOY为一年中的天数 Ta, PAR分别为测定时大气的平均温度和光有效辐射 VWC, Ts分别为土壤10 cm深的体积含水量和温度, 其中1表示草地生态系统, 2表示小麦田生态系统。数值为当日测定期间(8:30~10:30)的平均值 Air temperature (Ta) photosynthetically-active radiation (PAR); Soil volume water content (VWC) at 10 cm deep; Soil temperature (Ts)at 10cm deep. “1” indicates steppe “2”indicates wheat field. The data shown are means of data from 8:30 to 10:30 in the measured day
Fig. 1 Seasonal changes of the main environments in steppe and wheat field during the growing season in 2006
图2 2006年生长季草地和小麦田生态系统的叶面积指数(LAI)和地上生物量(BA)的季节变化
Fig 2 Seasonal changes of leaf area index (LAI) and aboveground biomass (BA) in steppe and wheat field during the growing season in 2006
天DOY | 地上生物量 Aboveground biomass (g) | 绿叶 Green leaf (g) | 枯叶 Withered leaf (g) | 茎 Sterm (g) | 生殖穗 Spike (g) | ||||
---|---|---|---|---|---|---|---|---|---|
草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | ||
192 | 189.1±13.6 | 86.3±3.4 | 102.8±11.3 | ||||||
193 | 319.8±26.4 | 65.3±7.0 | 12.7±1.0 | 193.3±13.8 | 45.0±6.1 | ||||
200 | 460±32.5 | 58.4±8.4 | 22.2±2.6 | 315.9±30.8 | 84.2±2.6 | ||||
206 | 197.4±17.2 | 91.2±5.7 | 98.6±12.8 | ||||||
207 | 806.5±16.8 | 78.2±8.0 | 45.8±4.2 | 521.9±32.0 | 160.5±13.6 | ||||
214 | 643.5±36.4 | 38.0±1.8 | 48.6±2.3 | 401.3±15.8 | 155.6±20.2 | ||||
221 | 213.7±25.4 | 82.0±4.0 | 18.3±3.3 | 112.8±27.4 | 21.0±6.0 | ||||
221 | 870.7±47.7 | 21.2±0.9 | 82.9±4.0 | 464.0±19.0 | 302.7±24.5 | ||||
228 | 837.7±45.4 | 4.1±0.4 | 88.0±2.6 | 364.6±26.0 | 381.1±22.6 | ||||
234 | 197.2±11.9 | 68.2±4.2 | 20.2±4.1 | 98.3±14.3 | 10.4±2.4 | ||||
235 | 753.7±33.5 | 1.4±0.9 | 61.1±5.1 | 299.3±12.0 | 391.9±22.4 | ||||
253 | 174.5±20.0 | 47.4±7.6 | 34.0±2.7 | 76.3±16.7 | 16.7±3.8 | ||||
266 | 140.4±6.9 | 36.9±3.2 | 34.7±3.2 | 67.1±4.4 | 1.57±0.3 |
表1 草地和小麦田生态系统地上各部分生物量的季节变化(g·m-2)(平均值±标准误差)
Table 1 Seasonal changes of biomass of different parts of aboveground in steppe and wheat field (g·m-2)(Mean±SE)
天DOY | 地上生物量 Aboveground biomass (g) | 绿叶 Green leaf (g) | 枯叶 Withered leaf (g) | 茎 Sterm (g) | 生殖穗 Spike (g) | ||||
---|---|---|---|---|---|---|---|---|---|
草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | ||
192 | 189.1±13.6 | 86.3±3.4 | 102.8±11.3 | ||||||
193 | 319.8±26.4 | 65.3±7.0 | 12.7±1.0 | 193.3±13.8 | 45.0±6.1 | ||||
200 | 460±32.5 | 58.4±8.4 | 22.2±2.6 | 315.9±30.8 | 84.2±2.6 | ||||
206 | 197.4±17.2 | 91.2±5.7 | 98.6±12.8 | ||||||
207 | 806.5±16.8 | 78.2±8.0 | 45.8±4.2 | 521.9±32.0 | 160.5±13.6 | ||||
214 | 643.5±36.4 | 38.0±1.8 | 48.6±2.3 | 401.3±15.8 | 155.6±20.2 | ||||
221 | 213.7±25.4 | 82.0±4.0 | 18.3±3.3 | 112.8±27.4 | 21.0±6.0 | ||||
221 | 870.7±47.7 | 21.2±0.9 | 82.9±4.0 | 464.0±19.0 | 302.7±24.5 | ||||
228 | 837.7±45.4 | 4.1±0.4 | 88.0±2.6 | 364.6±26.0 | 381.1±22.6 | ||||
234 | 197.2±11.9 | 68.2±4.2 | 20.2±4.1 | 98.3±14.3 | 10.4±2.4 | ||||
235 | 753.7±33.5 | 1.4±0.9 | 61.1±5.1 | 299.3±12.0 | 391.9±22.4 | ||||
253 | 174.5±20.0 | 47.4±7.6 | 34.0±2.7 | 76.3±16.7 | 16.7±3.8 | ||||
266 | 140.4±6.9 | 36.9±3.2 | 34.7±3.2 | 67.1±4.4 | 1.57±0.3 |
图3 2006年生长季草地(Steppe)和小麦田生态系统(Wheat)的群落气体净交换速率(NEE)(a)和群落呼吸速率(TER)(b)的季节变化 负号表示碳吸收, 正号表示碳释放
Fig 3 Seasonal changes of net ecosystem exchange (NEE) (a) and total ecosystem respiration (TER) (b) of steppe and wheat field during the growing season in 2006 Negative indicates carbon uptake, positive indicates carbon release *: p <0.05 **: p <0.01
图4 2006年6月18日(DOY169)草地和小麦田生态系统的群落净气体交换速率(NEE)(a)、群落初级同化速率(PA)(b)和群落呼吸速率(TER)(c)的日变化 负号表示碳吸收
Fig. 4 Diel variations of net ecosystem exchange (NEE) (a), primary assimilation (PA) (b) and total ecosystem respiration (TER) (c) on 18 June, 2006 in steppe and wheat field Negative means carbon uptake
图5 生长季草地和小麦田生态系统的群落净气体交换(NEE)与叶面积指数(LAI)的线性关系 负号表示碳吸收
Fig. 5 Linear relationships between net ecosystem exchange (NEE) with leaf area index (LAI) in steppe and wheat field during the growing season Negative means carbon uptake
图6 生长季草地和小麦田生态系统的群落呼吸(TER)分别与土壤温度(Ts, 10 cm深)的线性关系
Fig. 6 Linear relationships between total ecosystem respiration (TER) and soil temperature at 10 cm depth (Ts) in the steppe and wheat field during the growing season
图7 生长季草地和小麦田生态系统的群落呼吸(TER)分别与土壤体积含水量(VWC, 10 cm深)的线性关系。
Fig. 7 Linear relationships between total ecosystem respiration (TER) and soil volume water content at 10 cm depth (VWC) in the steppe and wheat field during the growing season
[1] | Baldocchi DD (1994). A comparative study of mass and energy exchange over a closed C 3 (wheat) and an open C 4 (corn) crop: II.CO 2 exchange and water use efficiency. Agricultural and Forest Meteorology, 67,291-321. |
[2] | Baldocchi DD (1997). Measuring and modeling carbon dioxide and water vapor exchange over a temperate broad-leafed forest during the 1985 summer drought. Plant, Cell and Environment, 20,1108-1122. |
[3] |
Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001). Factors controlling long- and short-term sequestration of atmospheric CO 2 in a mid-latitude forest. Science, 294,1688-1691.
DOI URL PMID |
[4] | Black TA, Hartog G, Neumann HH, Blanken PD, Yang PC, Russell C, Nesic Z, Lee X, Chen SG, Staebler R, Novak MD (1996). Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology, 2,219-229. |
[5] |
Chaves MM, Pereira JS, Maroco JP, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalh I, Faria T, inheiro CP (2002). How plants cope with water stress in the field? Photosunthesis and growth. Annals of Botany, 89,907-916.
URL PMID |
[6] | Chen YP, Chen YN, Li WH, Xu CC (2006). Characterization of photosynthesis of Populus euphratica grown in the arid region. Photosynthetica, 44,622-626. |
[7] | Chen ZZ (陈佐忠) (1988). Overview of topography and climate in the Xinlin river basin of Inner Mongolia. Research on Grassland Ecosystem (草原生态系统研究), (3),13-22. |
[8] | Ciais P, Tans PP, White JW, Trolier M, Francey RJ, Berry JA, Randall DR, Sellers PJ, Collatz JG, Schimel DS (1995). Partitioning of ocean and land uptake of CO 2 as inferred by δ 13C measurement from the NOAA/ CMDL global air sampling network. Journal of Geophysical Research, 100,5051-5070. |
[9] | Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Massarie KA, Zhang N (1994). Evidence for interannual variability of the carbon cycle from the National oceanic and Atmospheric Administration/Climate Monitoring and Diagnostic Laboratory global air sampling network. Journal of Geophysical Research, 99,22831-22855. |
[10] | Duan XN (段晓男), Wang XK (王效科), Feng ZZ (冯兆忠), Ouyang ZY (欧阳志云) (2005). Study of net ecosystem exchange for seedling stage of spring wheat ecosystem in Hetao Irrigation District, Inner Mongolia. Acta Scientiae Circumstantiae(环境科学学报), 2,166-171. (in Chinese with English abstract) |
[11] | Dugas WA, Heuer ML, Mayeux HS (1999). Carbon dioxide fluxes over bermudagrass, native prairie, and sorghum. Agricultural and Forest Meteorology, 93,121-139. |
[12] | Flanagan LB, Johnson BG (2005). Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 130,237-253. |
[13] | Flanagan LB, Wever LA, Carson PJ (2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8,599-615. |
[14] | Frank AB, Dugas WA (2001). Carbon dioxide fluxes over a northern, semiarid, mixed grass prairie. Agricultural and Forest Meteorology, 108,317-326. |
[15] | Fu YL, Yu GR, Sun XM, Li YN, Wen XF, Zhang LM, Li ZQ, Zhao LA, Hao YB (2006). Depression of net ecosystem CO 2 exchange in semi-arid Leymus chinensis steppe and alpine shrub. Agricultural and Forest Meteorology, 137,234-244. |
[16] | Gratani L, Varone L (2004). Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. Photosynthetica, 42,551-558. |
[17] | Ham JM, Knapp AK (1998). Fluxes of CO 2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agricultural and Forest Meteorology, 89,1-14. |
[18] | Houghton RA 1995. Changes in the storage of terrestrial carbon since 1850. In: Lal R, Kimble J, Levine E, Steanrt BA eds. Soils and Global Change. CRC Press, Inc. Boca Raton, Florida, 45-65. |
[19] | Hunt JE, Kelliher FM, McSeveny TM, Byers JN (2002). Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology, 111,65-82. |
[20] | Kato T, Tang YH, Gu S, Hirota M (2006). Temperature and biomass influences on interannual changes in CO 2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 12,1285-1298. |
[21] | Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113,97-120. |
[22] | Li LH (李凌浩), Liu XH (刘先华), Chen ZZ (陈佐忠) (1998). Study on the carbon cycle of Leymus chinensis steppe in the Xinlin river basin. Acta Botanica Sinica (植物学报), 40,955-961. (in Chinese with English abstract) |
[23] | Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T, Oikawa T, Davaa G, Oyunbaatar D, Sugita M (2005). Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology, 11,1-15. |
[24] | Matos MC, Matos AA, Mantas A, Cordeiro V, Vieira DA, Silva JB (1998). Diurnal and seasonal changes in Prunus amygdalus gas exchanges. Photosynthetica, 35,517-524. |
[25] | Matos MC, Rebelo E, Lauriano J, Semedo J, Marques N, Campos PS, Matos A, Vieira-da-silva J (2004). CO 2 assimilation and water relations of almond tree ( Prunus amygdalus Batsch) cultivars grown under field conditions. Photosynthetica, 42,473-476. |
[26] |
Ni BR, Pallardy SG (1991). Response of gas exchange to water stress in seedlings of woody angiosperms. Tree Physiology, 8,1-9.
DOI URL PMID |
[27] | Norman JM, Polley W (1989). Canopy photosynthesis. In: Briggs WR ed. Photosynthesis: Proc. of C.S. French Symp. on Photosynthesis, Stanford, CA, 27-23 July 1988. A. R. Liss, Inc., New York, 227-241. |
[28] | Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario JL (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biochemical Cycles, 7,785-810. |
[29] | Scurlock JMO, Hall DO (1998). The global carbon sink: a grassland perspective. Global Change Biology, 4,229-233. |
[30] | Suyker AE, Verman SB, Burba G (2003). Interannual variability in net CO 2 exchange of a native tallgrass prairie. Global Change Biology, 9,255-265. |
[31] | Tans PP, Fung IY, Takahashi T (1990). Observational constraints on the global atmospheric CO 2 budget. Science, 247,1431-1438. |
[32] | Tian HY (田洪艳), Guo P (郭平), Zhou DW (周道玮) (2001). The study on the disturbance ecological effect of reclamation of grasslands on soil and vegetation. Arid Zone Research(干旱区研究), 18(3),67-71. (in Chinese with English abstract) |
[33] | Verma SB, Kim J, Clement RJ (1992). Momentum, water vapour, and carbon dioxide exchange at a centrally located prairie site during FIFE. Journal of Geophysical Research, 97,18629-18639. |
[34] | Wen XF, Yu GR, Sun XM, Li QK, Liu YF, Zhang LM, Ren CY, Fu YL, Li ZQ (2006). Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agricultural and Forest Meteorology, 137,166-175. |
[35] |
Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA (1993). Net exchange of CO 2 in a mid-latitude forest. Science, 260,1314-1317.
DOI URL PMID |
[36] | Xinhua News (新华网) (2006). http://www.nmg.xinhua.org/zjcy/2006-11/24/content_8609465.htm. (in Chinese) |
[37] | Xu LK, Baldocchi DD (2004). Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 1232,79-96. |
[38] | Yu GR, Wen XF, Li QK, Zhang LM, Ren CY, Liu YF, Guan DX (2005). Seasonal patterns and environmental control of ecosystem respiration in subtropical and temperate forests in China. Science in China Series D Earth Sciences, 48 (Suppl. 1),93-105. |
[39] | Zha TS, Kellomäki S, Wang KY, Rouvinen I (2004). Carbon sequestration and ecosystem respiration for 4 years in a Scots pine forest. Global Change Biology, 10,1492-1503. |
[40] | Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Fu YL, Li QK, Li ZQ, Liu YF, Guan DX, Yan JH (2006). Seasonal variations of ecosystem apparent quantum yield (a) and maximum photosynthesis rate ( P max) of different forest ecosystems in China. Agricultural and Forest Meteorology, 137,176-187. |
[41] | Zhang SR, Gao RF (1999). Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress. Photosynthetica, 37,559-571. |
[42] | Zhang YQ (张永强), Chen YJ (沈彦俊), Liu CM (刘昌明), Yu Q (于强), Sun HY (孙宏永), Jia JS (贾金生), Tang CY (唐常源), Kondoh A (2002). Measurement and analysis of water,heat and CO 2 flux from a farmland in the North China Plain. Acta Geographica Sinica(地理学报), 57,333-342.. (in Chinese with English abstract) |
[43] | Zhou GS (周广胜), Wang YH (王玉辉), Jiang YL (蒋延玲), Yang LM (杨利民) (2002). Conversion of terrestrial ecosystems and carbon cycling. Acta Phytoecologica Sinica(植物生态学报), 26,250-254. (in Chinese with English abstract) |
[44] | Zhou T (周涛), Shi PJ (史培军) (2006). Indirect impacts of land use change on soil organic carbon change in China. Advances in Earth Science(地球科学进展), 21,138-143. (in Chinese with English abstract) |
[1] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[2] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[3] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[4] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[5] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[6] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[7] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[8] | 周明, 刘志理, 金光泽. 利用3种校正方案提高间接法测定兴安落叶松人工林叶面积指数的精度[J]. 植物生态学报, 2016, 40(6): 574-584. |
[9] | 朱绪超, 袁国富, 邵明安, 易小波, 杜涛. 塔里木河下游河岸带植被的空间结构特征[J]. 植物生态学报, 2015, 39(11): 1053-1061. |
[10] | 刘志理, 金光泽, 周明. 利用直接法和间接法测定针阔混交林叶面积指数的季节动态[J]. 植物生态学报, 2014, 38(8): 843-856. |
[11] | 穆少杰, 周可新, 齐杨, 陈奕兆, 方颖, 朱超. 内蒙古植被降水利用效率的时空格局及其驱动因素[J]. 植物生态学报, 2014, 38(1): 1-16. |
[12] | 苏宏新, 白帆, 李广起. 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较[J]. 植物生态学报, 2012, 36(3): 231-242. |
[13] | 许皓, 李彦, 谢静霞, 程磊, 赵彦, 刘冉. 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响[J]. 植物生态学报, 2010, 34(4): 375-386. |
[14] | 侯琼, 王英舜, 杨泽龙, 师桂花. 内蒙古典型草原作物系数的动态模拟与确定[J]. 植物生态学报, 2010, 34(12): 1414-1423. |
[15] | 刘建立, 王彦辉, 于澎涛, 程丽莉, 熊伟, 徐丽宏, 杜阿朋. 六盘山叠叠沟小流域典型坡面土壤水分的植被承载力[J]. 植物生态学报, 2009, 33(6): 1101-1111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19