植物生态学报 ›› 2013, Vol. 37 ›› Issue (9): 811-819.DOI: 10.3724/SP.J.1258.2013.00085
朱强根1, 金爱武1,*(), 王意锟1, 邱永华2, 李雪涛3, 张四海1
收稿日期:
2013-05-28
接受日期:
2013-07-16
出版日期:
2013-05-28
发布日期:
2013-09-02
通讯作者:
金爱武
作者简介:
*E-mail: kinaw@zafu.edu.cn基金资助:
ZHU Qiang-Gen1, JIN Ai-Wu1,*(), WANG Yi-Kun1, QIU Yong-Hua2, LI Xue-Tao3, ZHANG Si-Hai1
Received:
2013-05-28
Accepted:
2013-07-16
Online:
2013-05-28
Published:
2013-09-02
Contact:
JIN Ai-Wu
摘要:
植物枝、叶的异速生长关系受个体发育的限制, 同时还受到环境因素的影响。该研究应用异速生长分析方法探讨毛竹(Phyllostachys heterocycla‘Pubescens’)枝、叶关系及其生物量分配策略对不同营林模式(钩梢和施肥)的响应。结果表明: 与不钩梢相比, 钩梢(相当于60%的修枝水平)后毛竹枝叶生物量均有显著的下降(枝40.23%、叶41.01%); 施肥显著增加了钩梢和不钩梢毛竹枝、叶生物量(不钩梢枝20.67%、叶46.53%; 钩梢枝19.71%、叶13.95%)。施肥显著改变了毛竹枝、叶异速生长的标准主轴(standardized major axis, SMA)斜率(施肥0.75 vs不施肥0.82;p< 0.05), 表现为与不施肥相比, 叶片的光合产物在施肥处理上相对更多地转移到枝上。钩梢后, 毛竹枝、叶异速生长的SMA斜率显著增加(钩梢1.09-1.10 vs不钩梢0.74-0.83;p< 0.0001), 表现出钩梢引起更多的资源向叶片分配, 且在不施肥处理下, 这种效应更为强烈。光照因素导致了毛竹冠层枝、叶异速生长关系的差异, 并与施肥之间存在显著的交互效应。钩梢作为直接影响因素对毛竹枝、叶异速生长关系具有强烈的影响(p< 0.001), 导致枝、叶异速生长关系斜率变异接近50%, 而施肥或光照条件<10%, 表明枝、叶关系对不同环境或干扰因素的响应存在差异, 且间接因素(如施肥)的影响更多受到自身生长发育的限制。
朱强根, 金爱武, 王意锟, 邱永华, 李雪涛, 张四海. 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析. 植物生态学报, 2013, 37(9): 811-819. DOI: 10.3724/SP.J.1258.2013.00085
ZHU Qiang-Gen, JIN Ai-Wu, WANG Yi-Kun, QIU Yong-Hua, LI Xue-Tao, ZHANG Si-Hai. Biomass allocation of branches and leaves in Phyllostachys heterocycla‘Pubescens’ under different management modes: allometric scaling analysis. Chinese Journal of Plant Ecology, 2013, 37(9): 811-819. DOI: 10.3724/SP.J.1258.2013.00085
指标 Index | 不钩梢 Unobtruncation | 钩梢 Obtruncation | |||
---|---|---|---|---|---|
施肥 Fertilization | 不施肥 Non-fertilization | 施肥 Fertilization | 不施肥 Non-fertilization | ||
胸径 Diameter at breast height (cm) | 8.81 ± 0.63 a | 8.56 ± 0.42 a | 10.07 ± 0.87 b | 10.06 ± 0.79 b | |
枝生物量 Branch biomass (g) | 2 364 ± 180 a | 1 959 ± 149 b | 1 408 ± 114 c | 1 176 ± 95 d | |
叶生物量 Leaf biomass (g) | 2 110 ± 99 A | 1 440 ± 189 B | 1 115 ± 73 c | 979 ± 91 d | |
总生物量 Total biomass (g) | 4 474 ± 168 A | 3 400 ± 306 B | 2 522 ± 146 c | 2 155 ± 179 d |
表1 单株毛竹的平均枝、叶生物量(平均值±标准偏差)
Table 1 Averaged biomass of branches and leaves of individual Phyllostachys heterocycla ‘Pubescens’ (mean ± SD)
指标 Index | 不钩梢 Unobtruncation | 钩梢 Obtruncation | |||
---|---|---|---|---|---|
施肥 Fertilization | 不施肥 Non-fertilization | 施肥 Fertilization | 不施肥 Non-fertilization | ||
胸径 Diameter at breast height (cm) | 8.81 ± 0.63 a | 8.56 ± 0.42 a | 10.07 ± 0.87 b | 10.06 ± 0.79 b | |
枝生物量 Branch biomass (g) | 2 364 ± 180 a | 1 959 ± 149 b | 1 408 ± 114 c | 1 176 ± 95 d | |
叶生物量 Leaf biomass (g) | 2 110 ± 99 A | 1 440 ± 189 B | 1 115 ± 73 c | 979 ± 91 d | |
总生物量 Total biomass (g) | 4 474 ± 168 A | 3 400 ± 306 B | 2 522 ± 146 c | 2 155 ± 179 d |
图2 不钩梢(A)和钩梢(B)处理毛竹枝、叶生物量的异速生长关系。
Fig. 2 Allometric relationships between branch and leaf biomass in Phyllostachys heterocycla ‘Pubescens’ under unobtruncation (A) and obtruncation (B) treatments.
图3 不钩梢毛竹冠层下部(A)和上部(B)、钩梢毛竹冠层下部(C)和上部(D)的枝、叶生物量的异速生长关系。
Fig. 3 Allometric relationships between branch and leaf biomass of lower canopy under unobtruncation (A) and obtruncation (C) and allometric relationships between branch and leaf biomass of upper canopy under unobtruncation (B) and obtruncation (D).
[1] | Albaugh TJ, Allen HL, Dougherty PM, Kress LW, King JS (1998). Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science, 44, 317-328. |
[2] | Alcorn PJ, Bauhus J, Smith RGB, Thomas D, James R, Nicotra A (2008). Growth response following green crown pruning in plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana. Canadian Journal of Forest Research, 38, 770-781. |
[3] | Alcorn PJ, Forrester DI, Thomas DS, James R, Smith RGB, Nicotra AB, Bauhus J (2013). Changes in whole-tree water use following live-crown pruning in young plantation- grown Eucalyptus pilularis and Eucalyptus cloeziana. Forests, 4, 106-121. |
[4] |
Alméras T, Costes E, Salles JC (2004). Identification of biomechanical factors involved in stem shape variability between apricot tree varieties. Annals of Botany, 93, 455-468.
URL PMID |
[5] | Anttonen S, Piispanen R, Ovaska J, Mutikainen P, Saranpää P, Vapaavuori E (2002). Effects of defoliation on growth, biomass allocation, and wood properties of Betula pendula clones grown at different nutrient levels. Canadian Journal of Forest Research, 32, 498-508. |
[6] | Brouat C, Gibernau M, Amsellem L, McKey D (1998). Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytologist, 139, 459-470. |
[7] | Chen H, Hong W, Lan B, Zheng YS, He DJ (1998). Study on biomass and productivity of Phyllostachys heterocycla cv. pubescens forest in the north of Fujian. Scientia Silvae Sinicae, 34(Suppl.1),60-64. (in Chinese with English abstract) |
[陈辉, 洪伟, 兰斌, 郑郁善, 何东进 (1998). 闽北毛竹生物量与生产力的研究. 林业科学, 34(增刊1),60-64.] | |
[8] |
Corner EJH (1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414.
DOI URL |
[9] | Coyle DR, Coleman MD (2005). Forest production responses to irrigation and fertilization are not explained by shifts in allocation. Forest Ecology and Management, 208, 137-152. |
[10] | Coyle DR, Coleman MD, Aubrey DP (2008). Above- and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization. Canadian Journal of Forest Research, 38, 1335-1348. |
[11] | de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005). A modular concept of phenotypic plasticity in plants. New Phytologist, 166, 73-82. |
[12] |
Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
DOI URL PMID |
[13] |
Eyles A, Pinkard EA, Mohammed C (2009). Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiology, 29, 753-764.
DOI URL PMID |
[14] | Falster DS, Warton DI, Wright IJ (2006). User’s Guide to SMATR: Standardized Major Axis Tests & Routines Version 2.0. http://www.bio.mq.edu.au/ecology/SMATR/. Cited March 11, 2012. |
[15] | Fine PV, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Säksjä I, Schultz JC, Coley PD (2006). The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology, 87, S150-S162. |
[16] | Gebauer RLE, Reynolds JF, Strain BR (1996). Allometric and relations and growth in Pinus taeda: the effect of elevated CO2 changing N availability. New Phytologist, 134, 85-93. |
[17] | Giardina CP, Ryan MG, Binkley D, Fownes JH (2003). Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Global Change Biology, 9, 1438-1450. |
[18] | Gillespie AR, Allen HL, Vose JM (1994). Amount and vertical distribution of foliage of young loblolly pine trees as affected by canopy position and silvicultural treatment. Canadian Journal of Forest Research, 24, 1337-1344. |
[19] | Gower ST, Gholz HL, Nakane K, Baldwin VC (1994). Production and carbon allocation patterns of pine forests. Ecological Bulletins, (43),115-135. |
[20] |
Gui RY, Shao JF, Yu YM, Zhu YJ, Dong DY, Fang W (2011). Influence of obtruncation on physical and mechanical properties of 5 years old culms of Phyllostachys edulis. Scientia Silvae Sinicae, 47(6),194-198. (in Chinese with English abstract)
DOI URL |
[桂仁意, 邵继锋, 俞友明, 朱永军, 董墩义, 方伟 (2011). 钩梢对5年生毛竹竹材物理力学性质的影响. 林业科学, 47(6),194-198.]
DOI URL |
|
[21] | Hallé F, Oldeman RAA, Tomlinson PB (1978). Tropical Trees and Forests―An Architectural Analysis. Springer-Verlag, Berlin. |
[22] |
Haukioja E, Koricheva J (2000). Tolerance to herbivory in woody vs. herbaceous plants. Evolutionary Ecology, 14, 551-562.
DOI URL |
[23] |
Haynes BE, Gower ST (1995). Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology, 15, 317-325.
DOI URL PMID |
[24] |
Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010). Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140.
DOI URL |
[25] |
Kajimoto T, Matsuura Y, Osawa A, Abaimov AP, Zyryanova OA, Isaev AP, Koike T (2006). Size-mass allometry and biomass allocation of two larch species growing on the continuous permafrost region in Siberia. Forest Ecology and Management, 222, 314-325.
DOI URL |
[26] | Karban R, Baldwin IT (1997). Induced Responses to Herbivory. University of Chicago Press, Chicago. |
[27] |
Kerkhoff AJ, Enquist BJ (2006). Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9, 419-427.
DOI URL PMID |
[28] |
King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002). Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154, 389-398.
DOI URL |
[29] |
Komiyama A, Ong JE, Poungparn S (2008). Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany, 89, 128-137.
DOI URL |
[30] |
Komiyama A, Poungparn S, Kato S (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21, 471-477.
DOI URL |
[31] | Liu EB, Zhou GM, Jiang PK, Ge HL, Du HQ (2009). Construction of biomass unite model with nonlinear partial least squares regression: a case of study for bamboo biomass. Acta Ecologica Sinica, 29, 5561-5569. (in Chinese with English abstract) |
[刘恩斌, 周国模, 姜培坤, 葛宏立, 杜华强 (2009). 生物量统一模型构建及非线性偏最小二乘辨识——以毛竹为例. 生态学报, 29, 5561-5569.] | |
[32] |
Milla R, Reich PB (2011). Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany, 107, 455-465.
DOI URL |
[33] |
Myers JA, Kitajima K (2007). Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. Journal of Ecology, 95, 383-395.
DOI URL |
[34] |
Normand F, Bissery C, Damour G, Lauri PÉ (2008). Hydraulic and mechanical stem properties affect leaf-stem allometry in mango cultivars. New Phytologist, 178, 590-602.
DOI URL |
[35] |
Pinkard EA (2002). Effects of pattern and severity of pruning on growth and branch development of pre-canopy closure Eucalyptus nitens. Forest Ecology and Management, 157, 217-230.
DOI URL |
[36] |
Pinkard EA, Beadle CL (1998). Aboveground biomass partitioning and crown architecture of Eucalyptus nitens following green pruning. Canadian Journal of Forest Research, 28, 1419-1428.
DOI URL |
[37] |
Poorter L (2001). Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Functional Ecology, 15, 113-123.
DOI URL |
[38] |
Quentin AG, Pinkard EA, Beadle CL, Wardlaw TJ, O’Grady AP, Paterson S, Mohammed CL (2010). Do artificial and natural defoliation have similar effects on physiology of Eucalyptus globulus Labill. seedlings? Annals of Forest Science, 67, 203.
DOI URL |
[39] | Song YD, Jin AW, Jin XC, Hu YB, Du LL, Jiang ZY (2010). Physiology of leaf photosynthesis with fertilization in Phyllostachys pubescens. Journal of Zhejiang Forestry College, 27, 334-339. (in Chinese with English abstract) |
[宋艳冬, 金爱武, 金晓春, 胡元斌, 杜亮亮, 江志友 (2010). 施肥对毛竹叶片光合生理的影响. 浙江林学院学报, 27, 334-339.] | |
[40] | Stevens MT, Kruger EL, Lindroth RL (2008). Variation in tolerance to herbivory is mediated by differences in biomass allocation in aspen. Functional Ecology, 22, 40-47. |
[41] |
Thomas DS, Montagu KD, Conroy JP (2006). Effects of leaf and branch removal on carbon assimilation and stem wood density of Eucalyptus grandis seedlings. Trees, 20, 725-733.
DOI URL |
[42] |
Valladares F, Gianoli E, Gómez JM (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 749-763.
DOI URL |
[43] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[44] |
Walter A, Schurr U (2005). Dynamics of leaf and root growth: endogenous control versus environmental impact. Annuals of Botany, 95, 891-900.
DOI URL |
[45] | Wang H, Jin XC, Jin AW, Song YD, Chai HL, Wu LS (2011). Growth and culm form of Phyllostachys pubescens with fertilization. Journal of Zhejiang A&F University, 28, 741-746. (in Chinese with English abstract) |
[王宏, 金晓春, 金爱武, 宋艳冬, 柴红玲, 吴林森 (2011). 施肥对毛竹生长量和秆形的影响. 浙江农林大学学报, 28, 741-746.] | |
[46] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
DOI URL PMID |
[47] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[48] |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
DOI URL PMID |
[49] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL PMID |
[50] |
Xu Y, Yang XD, Xie YM, Xu YL, Chang SX, Yan ER (2012). Twig size-number trade-off among woody plants in Tiantong region, Zhejiang Province of China. Chinese Journal of Plant Ecology, 36, 1268-1276. (in Chinese with English abstract)
DOI URL |
[许月, 杨晓冬, 谢一鸣, 徐艺露, Scott X CHANG, 阎恩荣 (2012). 浙江天童木本植物小枝的“大小-数量”权衡. 植物生态学报, 36, 1268-1276.]
DOI URL |
|
[51] |
Yang DM, Zhan F, Zhang HW (2012). Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China. Chinese Journal of Plant Ecology, 36, 281-191. (in Chinese with English abstract)
DOI URL |
[杨冬梅, 占峰, 张宏伟 (2012). 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系. 植物生态学报, 36, 281-291.]
DOI URL |
|
[52] |
Yu TF, Feng Q, Si JF (2012). Simulating responses of leaf stomatal conductance to environmental factors for Tamarix ramosissma in an extreme arid region of China. Chinese Journal of Plant Ecology, 36, 483-490. (in Chinese with English abstract)
DOI URL |
[鱼腾飞, 冯起, 司建华 (2012). 极端干旱区多枝柽柳叶片气孔导度的环境响应模拟. 植物生态学报, 36, 483-490.]
DOI URL |
|
[53] | Zhuang RN, Jin AW (2013). Effects of fertilization on culm form characteristics of Phyllostachys pubescens. Journal of Central South University of Forestry & Technology, 33(1),80-84. (in Chinese with English abstract) |
[庄若楠, 金爱武 (2013). 施肥对毛竹秆型特征的影响. 中南林业科技大学学报, 33(1),80-84.] |
[1] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[2] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[3] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[4] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[5] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[6] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[7] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[8] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[9] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[10] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[11] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[12] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
[13] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[14] | 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093. |
[15] | 韩玲, 赵成章, 徐婷, 冯威, 段贝贝. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报, 2017, 41(5): 529-538. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 5127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2493
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La