植物生态学报 ›› 2008, Vol. 32 ›› Issue (6): 1386-1396.DOI: 10.3773/j.issn.1005-264x.2008.06.020
江志兵, 曾江宁, 陈全震(), 廖一波, 寿鹿, 徐晓群, 刘晶晶, 黄逸君
收稿日期:
2008-04-10
接受日期:
2008-06-30
出版日期:
2008-04-10
发布日期:
2008-11-30
通讯作者:
陈全震
作者简介:
*(chenqz6509@126.com)基金资助:
JIANG Zhi-Bing, ZENG Jiang-Ning, CHEN Quan-Zhen(), LIAO Yi-Bo, SHOU Lu, XU Xiao-Qun, LIU Jing-Jing, HUANG Yi-Jun
Received:
2008-04-10
Accepted:
2008-06-30
Online:
2008-04-10
Published:
2008-11-30
Contact:
CHEN Quan-Zhen
摘要:
近年来, 随着电厂在河口和港湾等生态脆弱区和敏感区的急剧增多, 电厂冷却系统热冲击和加氯对浮游生物造成的伤害已成为沿海地区非常严峻的生态安全问题。为探明冷却系统升温和加氯联合作用对亚热带海区浮游植物的影响程度, 针对滨海电厂的实际运作情况, 在室内对采自浙江省乐清湾海域的四季浮游植物进行了不同水平的热冲击和加氯胁迫, 并观察了这些浮游植物细胞数量在15 d内的动态变化。结果表明, 热冲击、加氯和季节均显著影响浮游植物细胞数量的恢复(p<0.001), 其中, 加氯的影响最大, 季节次之, 热冲击影响最小, 但热冲击增强了氯对浮游植物的毒性。自然水温越高、升温幅度越大, 细胞数量恢复越慢。春、秋、冬季自然水温较低时, 升温4~12 ℃后, 细胞数量仅需1~6 d即可恢复到对照组水平; 夏季自然水温较高, 升温4~8 ℃后, 细胞数量需4~9 d恢复到对照组水平, 但升温12 ℃后, 细胞数量在15 d内未能恢复到对照组水平。加氯浓度越高, 细胞数量恢复越慢。加氯1.0~1.8 mg·L-1后, 浮游植物生长虽受影响, 但大多能在15 d内恢复; 而加氯5.6 mg·L-1后, 其生长受到完全抑制, 细胞数量在15 d内未恢复到对照组水平。
江志兵, 曾江宁, 陈全震, 廖一波, 寿鹿, 徐晓群, 刘晶晶, 黄逸君. 热冲击和加氯后亚热带海区浮游植物细胞数量的动态变化. 植物生态学报, 2008, 32(6): 1386-1396. DOI: 10.3773/j.issn.1005-264x.2008.06.020
JIANG Zhi-Bing, ZENG Jiang-Ning, CHEN Quan-Zhen, LIAO Yi-Bo, SHOU Lu, XU Xiao-Qun, LIU Jing-Jing, HUANG Yi-Jun. DYNAMIC CHANGE OF PHYTOPLANKTON CELL DENSITY AFTER THERMAL SHOCK AND CHLORINATION IN A SUBTROPICAL BAY IN CHINA. Chinese Journal of Plant Ecology, 2008, 32(6): 1386-1396. DOI: 10.3773/j.issn.1005-264x.2008.06.020
季节 Seasons | 优势种 Dominant species | 占细胞总数的百分比 Percentages of total cell density (%) | ||||
---|---|---|---|---|---|---|
春 Spring | 中肋骨条藻 Skeletonema costatum | 24 | ||||
夏 Summer | 中肋骨条藻 S. costatum | 87 | ||||
秋 Autumn | 中肋骨条藻 S. costatum | 42 | ||||
冬 Winter | 中肋骨条藻 S. costatum | 75 |
表1 各季节浮游植物群落的优势种及其占细胞总数的百分比
Table 1 Dominant species of phytoplankton community and their percentages of total cell density in four seasons
季节 Seasons | 优势种 Dominant species | 占细胞总数的百分比 Percentages of total cell density (%) | ||||
---|---|---|---|---|---|---|
春 Spring | 中肋骨条藻 Skeletonema costatum | 24 | ||||
夏 Summer | 中肋骨条藻 S. costatum | 87 | ||||
秋 Autumn | 中肋骨条藻 S. costatum | 42 | ||||
冬 Winter | 中肋骨条藻 S. costatum | 75 |
水质参数 Quality parameters | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|
温度 Temperature (℃) | 20.0 | 28.0 | 22.0 | 10.0 |
盐度 Salinity | 25.5 | 20.3 | 27.5 | 21.5 |
pH | 8.11 | 8.01 | 8.00 | 8.05 |
化学需氧量 Chemical oxygen demand (mg·L-1) | 1.62 | 1.20 | 0.92 | 1.48 |
氨氮 NH3(μmol·L-1) | 0.029 | 0.128 | 0.044 | 0.020 |
亚硝酸盐 NO2-(μmol·L-1) | 0.571 | 1.714 | 1.071 | 0.857 |
表2 实验用水水质状况
Table 2 Quality parameters of experimental seawater
水质参数 Quality parameters | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|
温度 Temperature (℃) | 20.0 | 28.0 | 22.0 | 10.0 |
盐度 Salinity | 25.5 | 20.3 | 27.5 | 21.5 |
pH | 8.11 | 8.01 | 8.00 | 8.05 |
化学需氧量 Chemical oxygen demand (mg·L-1) | 1.62 | 1.20 | 0.92 | 1.48 |
氨氮 NH3(μmol·L-1) | 0.029 | 0.128 | 0.044 | 0.020 |
亚硝酸盐 NO2-(μmol·L-1) | 0.571 | 1.714 | 1.071 | 0.857 |
CD (mg·L-1) | ΔT (℃) | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|---|
1.0 | 0 | 25 | 30 | 35 | 20 |
4 | 20 | 30 | 35 | 20 | |
8 | 20 | 25 | 30 | 15 | |
12 | 15 | 20 | 25 | 15 | |
1.8 | 0 | 75 | 180 | 150 | 60 |
4 | 60 | 150 | 120 | 45 | |
8 | 45 | 120 | 90 | 45 | |
12 | 45 | 120 | 60 | 30 | |
3.2 | 0 | 150 | 960 | 2 160 | 2 160 |
4 | 150 | 960 | 1 920 | 2 160 | |
8 | 120 | 720 | 1 480 | 1 720 | |
12 | 120 | 480 | 1 200 | 1 440 | |
5.6 | 0 | 1 440 | 2 400 | 11 520 | 8 640 |
4 | 1 440 | 1 920 | 10 080 | 7 200 | |
8 | 960 | 1 680 | 8 640 | 7 200 | |
12 | 960 | 1 440 | 7 200 | 5 760 |
表3 不同季节各组海水中余氯衰减至低于检测限所需的时间
Table 3 Decaying time (min) of residual chlorine of each test team in different seasons (residual chlorine decaying until below detection limit)
CD (mg·L-1) | ΔT (℃) | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|---|
1.0 | 0 | 25 | 30 | 35 | 20 |
4 | 20 | 30 | 35 | 20 | |
8 | 20 | 25 | 30 | 15 | |
12 | 15 | 20 | 25 | 15 | |
1.8 | 0 | 75 | 180 | 150 | 60 |
4 | 60 | 150 | 120 | 45 | |
8 | 45 | 120 | 90 | 45 | |
12 | 45 | 120 | 60 | 30 | |
3.2 | 0 | 150 | 960 | 2 160 | 2 160 |
4 | 150 | 960 | 1 920 | 2 160 | |
8 | 120 | 720 | 1 480 | 1 720 | |
12 | 120 | 480 | 1 200 | 1 440 | |
5.6 | 0 | 1 440 | 2 400 | 11 520 | 8 640 |
4 | 1 440 | 1 920 | 10 080 | 7 200 | |
8 | 960 | 1 680 | 8 640 | 7 200 | |
12 | 960 | 1 440 | 7 200 | 5 760 |
ΔT (℃) | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|
4 | 1 | 4 | 1 | 2 |
8 | 2 | 9 | 3 | 2 |
12 | 6 | - | 4 | 2 |
表4 不同ΔT下各季节浮游植物细胞数量恢复到对照组水平时所需的时间
Table 4 Days (d) for phytoplankton cell density recovering to the control levels at different ΔT in all the seasons
ΔT (℃) | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|
4 | 1 | 4 | 1 | 2 |
8 | 2 | 9 | 3 | 2 |
12 | 6 | - | 4 | 2 |
因素Factors | df | F | p |
---|---|---|---|
ΔT | 3 | 9.24 | 0.000 |
CD | 4 | 46.31 | 0.000 |
季节 Season | 3 | 14.46 | 0.000 |
表5 ΔT、CD和季节对浮游植物细胞数量恢复时间影响的方差分析结果
Table 5 ANOVA results of phytoplankton cell density recovery period determined by ΔT, CD and seasons
因素Factors | df | F | p |
---|---|---|---|
ΔT | 3 | 9.24 | 0.000 |
CD | 4 | 46.31 | 0.000 |
季节 Season | 3 | 14.46 | 0.000 |
CD (mg·L-1) | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|
1.0 | 4 | 8 | 4 | 3 |
1.8 | 4 | 15 | 3 | 4 |
3.2 | 6 | - | 4 | 9 |
5.6 | - | - | - | - |
表6 不同CD下各季节浮游植物细胞数量恢复到对照组水平时所需的时间
Table 6 Days (d) for phytoplankton cell density recovering to the control level at different CD in all the seasons
CD (mg·L-1) | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|
1.0 | 4 | 8 | 4 | 3 |
1.8 | 4 | 15 | 3 | 4 |
3.2 | 6 | - | 4 | 9 |
5.6 | - | - | - | - |
ΔT (℃) | CD (mg·L-1) | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|---|
4 | 1.0 | 4 | 8 | 5 | 4 |
1.8 | 7 | 15 | 4 | 10 | |
3.2 | 13 | - | 4 | - | |
5.6 | - | - | - | - | |
8 | 1.0 | 5 | 12 | 4 | 4 |
1.8 | 11 | - | 4 | - | |
3.2 | 12 | - | 5 | - | |
5.6 | - | - | - | - | |
12 | 1.0 | 8 | - | 3 | 5 |
1.8 | - | - | 4 | - | |
3.2 | - | - | 4 | - | |
5.6 | - | - | - |
表7 热冲击和加氯联合作用下各季节浮游植物细胞数量恢复到对照组水平时所需的时间
Table 7 Days (d) for phytoplankton cell density recovering to the control levels under the combined effect of thermal shock and chlorination in all the seasons
ΔT (℃) | CD (mg·L-1) | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter |
---|---|---|---|---|---|
4 | 1.0 | 4 | 8 | 5 | 4 |
1.8 | 7 | 15 | 4 | 10 | |
3.2 | 13 | - | 4 | - | |
5.6 | - | - | - | - | |
8 | 1.0 | 5 | 12 | 4 | 4 |
1.8 | 11 | - | 4 | - | |
3.2 | 12 | - | 5 | - | |
5.6 | - | - | - | - | |
12 | 1.0 | 8 | - | 3 | 5 |
1.8 | - | - | 4 | - | |
3.2 | - | - | 4 | - | |
5.6 | - | - | - |
[1] | Bamber RN (1995). The influence of rising background temperature on the effects of marine thermal effluents. Journal of Thermal Biology, 20,105-110. |
[2] | Bamber RN, Seaby RMH (2004). The effects of power station entrainment passage on three species of marine planktonic crustacean, Acartia tonsa (Copepoda), Crangon crangon (Decapoda) and Homarus gammarus (Decapoda). Marine Environmental Research, 57,281-294. |
[3] |
Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444,752-755.
DOI URL PMID |
[4] | China State Bureau of Technical Supervision (国家技术监督局) (1992). Standard of Marine Investigation (海洋调查规范). Standards Press of China,Beijing. (in Chinese) |
[5] | Choi DH, Park JS, Hwang CY, Huh SH, Cho BC (2002). Effects of thermal effluents from a power station on bacteria and heterotrophic nanoflagellates in coastal waters. Marine Ecology Progress Series, 229,1-10. |
[6] | Department of the Environment (1981). Methods for the Examination of Waters and Associated Materials: Chemical Disinfecting Agents in Water and Effluents and Chlorine Demand. HMSO, London. |
[7] |
Doney SC (2006). Plankton in a warmer world. Nature, 444,695-696.
DOI URL PMID |
[8] | Duffy JE, Stachowicz JJ (2006). Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes. Marine Ecology Progress Series, 311,179-189. |
[9] | Goldman JC, Quinby HL (1979). Phytoplankton recovery after power plant entrainment. Journal of the Water Pollution Control Federation, 51,1811-1823. |
[10] |
Hamilton DH, Flemer DA, Keefe CW, Mihursky JA (1970). Power plants: effects of chlorination on estuarine primary production. Science, 169,197-198.
URL PMID |
[11] | Hirayama K, Hirano R (1970). Influence of high temperature and residual chlorine on marine phytoplankton. Marine Biology, 7,205-213. |
[12] | Hoffmeyer MS, Biancalana F, Berasategui A (2005). Impact of a power plant cooling system on copepod and mesoplankton survival (Bahía Blanca estuary, Argentina). Iheringia, Série Zoologia, 95,311-318. |
[13] |
Jiang ZB (江志兵), Zeng JN (曾江宁), Chen QZ (陈全震), Liao YB (廖一波), Xu XQ (徐晓群), Shou L (寿鹿), Liu JJ (刘晶晶), Gao AG (高爱根) (2008). Effects of residual heat and chlorine in cooling water from coastal power plant on Calanus sinicus. Chinese Journal of Applied Ecology(应用生态学报), 19,1401-1406. (in Chinese with English abstract)
URL PMID |
[14] | Jewson DH (1992). Size reduction, reproductive strategy and the life cycle of a centric diatom. Philosophical Transactions: Biological Science, 336,191-213. |
[15] | Langford TEL (1990). Ecological Effects of Thermal Discharges. Elsevier Applied Science Publishers,London. |
[16] | Liu LF (刘兰芬), Hao H (郝红), Lu GS (鲁光四) (2004a). Experiment study on attenuation law of residual chlorine in cooling water discharged from thermal power plants. Journal of Hydraulic Engineering(水利学报), 5,94-98. (in Chinese with English abstract) |
[17] | Liu LF (刘兰芬), Tan HW (谭红武), Zhang SJ (张士杰) (2004b). Method for assessing the impact of residual chlorine in cooling water on environment of thermal power plants. Journal of Hydraulic Engineering(水利学报), 6,98-103. (in Chinese with English abstract) |
[18] | Mallin MA, Stone KL, Pamperl MA (1994). Phytoplankton community assessments of seven southeast U.S. cooling reservoirs. Water Research, 28,665-673. |
[19] | Martínez-Arroyo A, Abundes S, González ME, Rosas I (2000). On the influence of hot-water discharges on phytoplankton communities from a coastal zone of the Gulf of Mexico. Water, Air, and Soil Pollution, 119,209-230. |
[20] | Murthy PS, Venkatesan R, Nair KVK, Jahan SS, Peter DM, Ravindran M (2005). Evaluation of sodium hypochlorite for fouling control in plate heat exchangers for seawater application. International Biodeterioration and Biodegradation, 52,161-170. |
[21] | Nebot E, Casanueva JF, Casanueva T, Fernández-Bastón MM, Sales D (2006). In situ experimental study for the optimization of chlorine dosage in seawater cooling systems. Applied Thermal Engineering, 26,1893-1900. |
[22] | Poornima EH, Rajaduraia M, Rao TS, Anupkuman B, Rajamohan R, Narasimhan SV, Rao VNR, Venugopalan VP (2005). Impact of thermal discharge from a tropical coastal power plant on phytoplankton. Journal of Thermal Biology, 30,307-316. |
[23] | Poornima EH, Rajadurai M, Rao VNR, Narasimhan SV, Venugopalan VP (2006). Use of coastal waters as condenser coolant in electric power plants: impaction on phytoplankton and primary productivity. Journal of Thermal Biology, 31,556-564. |
[24] | Rajadurai M, Poornima EH, Narasimhanb SV, Rao VNR, Venugopalan VP (2005). Phytoplankton growth under temperature stress: laboratory studies using two diatoms from a tropical coastal power station site. Journal of Thermal Biology, 30,299-305. |
[25] | Rajagopal S, Nair KVK, Azariah J, Velde GV, Jenner HA (1996). Chlorination and mussel control in the cooling conduits of a tropical coastal power station. Marine Environmental Research, 41,201-221. |
[26] |
Rajagopal S, Velde GV, Gaag MV, Jenner HA (2003). How effective is intermittent chlorination to control adult mussel fouling in cooling water systems. Water Research, 37,329-338.
DOI URL PMID |
[27] | Roberts JrMH (1977). Bioassay procedures for marine phytoplankton with special reference to chlorine. Chesapeake Science, 18,137-139. |
[28] | Sanders JG, Ryther JH, Batchelder JH (1981). Effects of copper, chlorine, and thermal addition on the species composition of marine phytoplankton. Journal of Experimental Marine Biology and Ecology, 49,81-102. |
[29] | Saravanane N, Satpathy KK, Nair KVK, Durairaj G (1998). Preliminary observations on the recovery of tropical phytoplankton after entrainment. Journal of Thermal Biology, 23,91-97. |
[30] | Smith TM, Reynolds RW (2005). A global merged land-air-sea surface temperature reconstruction based on historic observations (1880―1997). Journal of Climate, 18,2021-2036. |
[31] |
Taylor CJL (2006). The effects of biological fouling control at coastal and estuarine power stations. Marine Pollution Bulletin, 53,30-48.
DOI URL PMID |
[32] | Wei GF (韦桂峰), Wang ZD (王肇鼎) (2001). Laboratory simulation of combined chlorine influencing phytoplankton growth: chlorophyll a and phytosynthesis. Journal of Tropical Oceanology (热带海洋学报), 20,47-53. (in Chinese with English abstract) |
[33] | Werner D (1970). Productivity studies on diatom cultures. Helgoland Marine Reasearch, 20,97-103. |
[34] |
Zargar S, Ghosh TK (2007). Thermal and biocidal (chlorine) effects on select freshwater plankton. Archives of Environmental Contamination Toxicology, 53,191-197.
DOI URL PMID |
[35] | Zeng JN (曾江宁), Chen QZ (陈全震), Zheng P (郑平), Gao AG (高爱根), Liao YB (廖一波), Yang GM (杨关铭) (2005). Advance in effect of residual chlorine on hydrobios. Acta Ecologica Sinica(生态学报), 25,2717-2724. (in Chinese with English abstract) |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[3] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[4] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[5] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[6] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[7] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[8] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[9] | 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10): 1127-1139. |
[10] | 邓梦达, 游健荣, 李家湘, 李雄, 杨静, 邓创发, 刘昂, 刘文剑, 丁聪, 谢勇, 周国辉, 喻勋林. 长株潭城市群生态绿心地区主要植被类型的群落特征[J]. 植物生态学报, 2020, 44(12): 1296-1304. |
[11] | 胡慧, 杨雨, 包维楷, 刘鑫, 李芳兰. 干旱河谷微生境变化对乡土植物幼苗定植的影响[J]. 植物生态学报, 2020, 44(10): 1028-1039. |
[12] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[13] | 王明明,刘新平,何玉惠,张铜会,魏静,车力木格,孙姗姗. 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素[J]. 植物生态学报, 2019, 43(8): 672-684. |
[14] | 俞筱押, 李玉辉, 杨光荣. 石林地质公园不同群落类型植物果实组成与种子散布特征[J]. 植物生态学报, 2018, 42(6): 663-671. |
[15] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19