植物生态学报 ›› 2019, Vol. 43 ›› Issue (4): 320-330.DOI: 10.17521/cjpe.2019.0014
收稿日期:
2019-01-15
修回日期:
2019-03-29
出版日期:
2019-04-20
发布日期:
2019-08-29
通讯作者:
焦亮
基金资助:
JIAO Liang1,2,*(),WANG Ling-Ling1,LI Li1,CHEN Xiao-Xia1,YAN Xiang-Xiang1
Received:
2019-01-15
Revised:
2019-03-29
Online:
2019-04-20
Published:
2019-08-29
Contact:
JIAO Liang
Supported by:
摘要:
在全球气候变暖的背景下, 北半球中高纬度地区出现了树轮径向生长对气候变化的分异响应现象, 但是阿尔泰山优势针叶树种对气候因子响应的稳定性还存在不确定性。该研究选择阿尔泰山中段高海拔西伯利亚落叶松(Larix sibirica)样本建立了树轮宽度年表, 并对年表特征及树木径向生长-气候的动态关系进行了分析。结果表明: 生长季初期和中期的气温是研究区树木生长的主控气候因子; 树木径向生长与当年4月的气温显著负相关, 与当年6-7月的气温显著正相关; 研究区西伯利亚落叶松径向生长与当年4月和6-7月的气温发生了分异现象, 表现为随着气候变化, 树木径向生长对生长季初期由高温引起的干旱的响应敏感性越来越强, 而对生长季中期气温的敏感性表现出先减弱再增强的趋势。阿尔泰山西伯利亚落叶松径向生长对气候变化的响应比较敏感, 适合开展树木生长-气候变化的研究; 检验树木径向生长对气候变化分异响应为该区域基于树木年轮开展历史气候重建和提高未来森林生态系统发展趋势预测的准确性提供了科学依据。
焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应. 植物生态学报, 2019, 43(4): 320-330. DOI: 10.17521/cjpe.2019.0014
JIAO Liang, WANG Ling-Ling, LI Li, CHEN Xiao-Xia, YAN Xiang-Xiang. Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China. Chinese Journal of Plant Ecology, 2019, 43(4): 320-330. DOI: 10.17521/cjpe.2019.0014
图1 1959-2012年阿尔泰山研究区月平均最低气温、平均气温、平均最高气温和降水量的变化。
Fig. 1 Variations in monthly mean minimum air temperature, mean air temperature, mean maximum air temperature and total precipitation from 1959 to 2012 in study area of Altay Mountains.
图2 阿尔泰山研究区平均最低气温、平均气温、平均最高气温和降水量的年际变化(1959-2012年)。
Fig. 2 Variations in annual mean minimum air temperature, mean air temperature, mean maximum air temperature and total precipitation during 1959-2012 in study area of Altay Mountains.
统计特征 Statistics | 数值 Value |
---|---|
平均敏感度 Mean sensitivity (MS) | 0.216 |
标准偏差 Standard deviation (SD) | 0.212 |
一阶自回归系数 First-order serial autocorrelation (AC1) | 0.122 |
样本相关系数 Correlation coefficient for all series (R1) | 0.467 |
树内相关系数 Correlation coefficients within trees (R2) | 0.673 |
树间相关系数 Correlation coefficients between trees (R3) | 0.463 |
第一主分量方差 Variance in first eigenvector (PC1)(%) | 48.5 |
信噪比 Signal-to-noise ratio (SNR) | 38.59 |
样本总体解释量 Expressed population signal (EPS) | 0.975 |
信号强度(SSS) > 0.85起始年(树芯数) First year of SSS > 0.85 (Number of tree-ring) | 1 788 (6) |
表1 阿尔泰山西伯利亚落叶松差值年表主要特征参数
Table 1 Main parameters of tree-ring residual chronology of Larix sibirica in Altay Mountains
统计特征 Statistics | 数值 Value |
---|---|
平均敏感度 Mean sensitivity (MS) | 0.216 |
标准偏差 Standard deviation (SD) | 0.212 |
一阶自回归系数 First-order serial autocorrelation (AC1) | 0.122 |
样本相关系数 Correlation coefficient for all series (R1) | 0.467 |
树内相关系数 Correlation coefficients within trees (R2) | 0.673 |
树间相关系数 Correlation coefficients between trees (R3) | 0.463 |
第一主分量方差 Variance in first eigenvector (PC1)(%) | 48.5 |
信噪比 Signal-to-noise ratio (SNR) | 38.59 |
样本总体解释量 Expressed population signal (EPS) | 0.975 |
信号强度(SSS) > 0.85起始年(树芯数) First year of SSS > 0.85 (Number of tree-ring) | 1 788 (6) |
图3 阿尔泰山西伯利亚落叶松树轮宽度年表与月总降水量的相关性。p, 前一年; c, 当年。
Fig. 3 Correlations between tree-ring width chronology of Larix sibirica and monthly total precipitation from 1959 to 2012 in Altay Mountains. p, previous year; c, current year.
图4 阿尔泰山西伯利亚落叶松树轮宽度年表与月平均最低气温、平均气温和平均最高气温的相关性。空心五角星代表显著相关, p < 0.05; 实心五角星代表极显著相关, p < 0.01。p, 前一年; c, 当年。
Fig. 4 Correlations between tree-ring width chronology of Larix sibirica and monthly mean minimum temperature, mean temperature and mean maximum temperature from 1959 to 2012 in Altay Mountains. The open pentagrams represent significant correlation at the 0.05 level and the solid pentagrams represent significant correlation at the 0.01 level. p, previous year; c, current year.
图5 阿尔泰山西伯利亚落叶松树轮宽度年表与月气候因子的滑动相关分析。滑动窗口: 30年;五角星代表显著相关,p < 0.05;黑色条柱代表正相关,灰色条柱代表负相关。p, 前一年; c,当年。
Fig. 5 Moving crrelation between tree ring width chronology in Larix sibirica and monthly climnatic fators in Altay Mountains. Moving window: 30 years. The five pointed stars represent signifcance at the0.05 level. The black bars represent positive correlation and the gray bars represent negative correlation. p, previous year; c, current year.
[1] | Barber V, Juday GP, Finney B (2000). Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 405, 668-673. |
[2] | Bntgen U, Frank D, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006). Growth/climate response shift in a long subalpine spruce chronology. Trees, 20, 99-110. |
[3] | Briffa KR, Osborn TJ, Schweingruber FH ( 2004). Large-scale temperature inferences from tree rings: A review. Global and Planetary Change, 40, 11-26. |
[4] | Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998). Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 391, 678-682. |
[5] | Chang YX, Chen ZJ, Zhang XL, Bai XP, Zhao XP, Li JX, Lu X ( 2017). Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming. Chinese Journal of Plant Ecology, 41, 279-289. |
[ 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭 ( 2017). 气候变暖下大兴安岭落叶松径向生长对温度的响应. 植物生态学报, 41, 279-289.] | |
[6] | Chen F, Yuan YJ, Wei WS, Fan ZA, Zhang TW, Shang HM, Zhang RB, Yu SL, Ji CR, Li Q ( 2012). Climatic response of ring width and maximum latewood density of Larix sibirica in the Altay Mountains, reveals recent warming trends. Annals of Forest Science, 69, 723-733. |
[7] | Chen L, Yin YH, Zhao DS, Yuan QZ, Wu SH (2014). Climate response of tree growth along an altitudinal gradient in the Changbai Mountains, Northeast China. Acta Ecologica Sinica, 34, 1568-1574. |
[ 陈力, 尹云鹤, 赵东升, 苑全治, 吴绍洪 (2014). 长白山不同海拔树木生长对气候变化的响应差异. 生态学报, 34, 1568-1574.] | |
[8] | Cook E ( 1985). A Time Series Analysis Approach to Tree Ring Standardization. PhD dissertation, The University of Arizona, Tucson,USA. |
[9] | D’Arrigo R, Mashig E, Frank D, Wilson R, Jacoby G (2005). Temperature variability over the past millennium inferred from Northwestern Alaska tree rings. Climate Dynamics, 24, 227-236. |
[10] | D’Arrigo R, Wilson R, Liepert B, Cherubini P ( 2008). On the “divergence problem” in Northern Forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change, 60, 289-305. |
[11] | Day ME, Greenwood MS, Diaz-Sala C ( 2002). Age- and size-relatedtrends in woody plant shoot development: Regulatory pathways and evidence for genetic control. Tree Physiology, 22, 507-513. |
[12] | Fritts HC (1976). Tree Rings and Climate. Academic Press, London. |
[13] | Gazol A, Camarero JJ, Gutiérrez E, Popa I, Andreu-Hayles L, Motta R, Nola P, Ribas M, Sangüesa-Barreda G, Urbinati C, Carrer M (2015). Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography, 42, 1150-1162. |
[14] | Gou XH, Chen FH, Yang MX, Peng JF, Qiang WY, Chen T ( 2004). Analysis of the tree-ring width chronology of Qilian Mountains at different elevation. Acta Ecologica Sinica, 24, 172-176. |
[ 勾晓华, 陈发虎, 杨梅学, 彭剑峰, 强维亚, 陈拓 ( 2004). 祁连山中部地区树轮宽度年表特征随海拔高度的变化. 生态学报, 24, 172-176.] | |
[15] | Holmes RL ( 1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-78. |
[16] | Hu J, Yu SL, Yuan YJ, Zhang TW, Shang HM, Zhang RB ( 2014). Characteristics of tree-ring width chronologies in the central Altay Mountains and climate response. Desert and Oasis Meteorology, 8, 19-26. |
[ 胡建, 喻树龙, 袁玉江, 张同文, 尚华明, 张瑞波 ( 2014). 阿尔泰山中部树轮宽度年表特征及其气候响应分析. 沙漠与绿洲气象, 8, 19-26.] | |
[17] | Huang LP, Gao YQ, Li Y, Zhang TW, Hu DY, Wang L ( 2015). Growth of Siberia larch in the middle east of Altay Mountains and its response to climate change. Arid Land Geography, 38, 1169-1178. |
[ 黄力平, 高亚琪, 李云, 张同文, 胡东宇, 王蕾 (2015). 阿尔泰山中东部西伯利亚落叶松生长量及其对气候变化的响应研究. 干旱区地理, 38, 1169-1178.] | |
[18] | IPCC (2013). Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[19] | Jacoby GC, D’Arrigo RD ( 1995). Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles, 9, 227-234. |
[20] | Jiang SX, Yuan YJ, Qin L, Yu SL, Shang HM, Lu MX, Zhang TW ( 2017). Analysis on climate and hydrology change characteristics during historical time in the Altai Mountains. Journal of Glaciology and Geocryology, 39, 672-679. |
[ 姜盛夏, 袁玉江, 秦莉, 喻树龙, 尚华明, 陆明鑫, 张同文 ( 2017). 阿尔泰山历史时期气候水文变化特征分析. 冰川冻土, 39, 672-679.] | |
[21] | Jiang SX, Yuan YJ, Wei WS, Shang HM, Zhang TW, Zhang RB, Qin L ( 2016). Early summer temperature history in the Altay Mountains recorded by tree rings during 1579-2009. Journal of Desert Research, 36, 1126-1132. |
[ 姜盛夏, 袁玉江, 魏文寿, 尚华明, 张同文, 张瑞波, 秦莉 ( 2016). 树轮记录的新疆阿尔泰山1579-2009年初夏温度变化. 中国沙漠, 36, 1126-1132.] | |
[22] | Jiao L, Jiang Y, Zhang WT, Wang MC, Zhang LN, Zhao SD ( 2015). Divergent responses to climate factors in the radial growth of Larix sibirica in the eastern Tianshan Mountains, northwest China. Trees, 29, 1673-1686. |
[23] | Li JX, Bai XP, Zhang XL, Chang YX, Lu X, Zhao XP, Chen ZJ ( 2017). Different responses of natural Pinus sylvestris var.mongolica growth to climate change in southern and northern forested areas in the Great Xingʼan Mountains. Acta Ecologica Sinica, 37, 7232-7241. |
[ 李俊霞, 白学平, 张先亮, 常永兴, 陆旭, 赵学鹏, 陈振举 ( 2017). 大兴安岭林区南、北部天然樟子松生长对气候变化的响应差异. 生态学报, 37, 7232-7241.] | |
[24] | Li MY, Yuan YJ, Wei WS, Zhang TW, Qin L (2011). Characteristics of tree-ring width chronologies in Western Altay and their response to climate change. Desert and Oasis Meteorology, 5, 16-21. |
[ 李漠岩, 袁玉江, 魏文寿, 张同文, 秦莉 (2011). 阿勒泰西部树轮宽度年表特征及其气候响应. 沙漠与绿洲气象, 5, 16-21.] | |
[25] | Liu GH, Fu BJ ( 2001). Effects of global climate change on forest ecosystems. Journal of Natural Resources, 16, 71-78. |
[ 刘国华, 傅伯杰 ( 2001). 全球气候变化对森林生态系统的影响. 自然资源学报, 16, 71-78.] | |
[26] | Lu JP ( 1960). Relationship between forest soil and spruce and larch in Tianshan and Altay Mountains, China. Soil Notification, (4), 30-41,16. |
[ 卢俊培 ( 1960). 我国天山和阿尔泰山的森林土壤与云杉和落叶松的关系. 土壤通报,(4), 30-41,16.] | |
[27] | Martin-Benito D, Del RM, Canellas I ( 2010). Black pine (Pirrus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Annals of Forest Science, 67, 401. |
[28] | Niu JQ, Yuan YJ, Zhang TW, Shang HM, Zhang RB, Yu SL, Chen F, Jiang SX ( 2016). Characteristics of tree-ring width chronologies in Altay and their response to climate change. Desert and Oasis Meteorology, 10, 59-67. |
[ 牛军强, 袁玉江, 张同文, 尚华明, 张瑞波, 喻树龙, 陈峰, 姜盛夏 ( 2016). 阿尔泰山区两种树轮宽度年表气候响应特征. 沙漠与绿洲气象, 10, 59-67.] | |
[29] | Peng JF, Gou XH, Chen FH, Li JB, Liu PX, Tian QH, Zhang Y, Zhang YX ( 2006). The responses of growth ring width variations of Larix sibirica Ledb. to climatic change in eastern Tianshan Mountains. Acta Ecologica Sinica, 26, 2723-2731. |
[ 彭剑峰, 勾晓华, 陈发虎, 李金豹, 刘普幸, 田沁花, 张永, 张永香 ( 2006). 天山东部西伯利亚落叶松树轮生长对气候要素的响应分析. 生态学报, 26, 2723-2731.] | |
[30] | Peng SS, Piao SL, Ciais P, Myneni RB, Chen AP, Chevallier F, Dolman AJ, Janssens IA, Penuelas J, Zhang GX, Vicca S, WanSQ, Wang SP, Zeng H ( 2013). Asymmetric effects of daytimeand night-time warming on Northern Hemisphere vegetation. Nature, 501, 88-92. |
[31] | Shang HM, Wei WS, Yuan YJ, Yu SL, Zhang TW, Waheti AZMT, Li XJ ( 2010). Response of tree ring width to recent climate change, south slope of Altai Mountains. Acta Ecologica Sinica, 30, 2246-2253. |
[ 尚华明, 魏文寿, 袁玉江, 喻树龙, 张同文, 瓦合提•艾则买提, 李新建 ( 2010). 阿尔泰山南坡树轮宽度对气候变暖的响应. 生态学报, 30, 2246-2253.] | |
[32] | Shao XM, Wu XD ( 1994). Tree-ring Chronologies for Pinus armandii Franch from Hua Shan, China. Acta Geographica Sinica, 49, 174-181. |
[ 邵雪梅, 吴祥定 ( 1994). 华山树木年轮年表的建立. 地理学报, 49, 174-181.] | |
[33] | Shi YF, Shen YP, Li DL, Zhang GW, Ding YJ, Hu RJ, Kang ES ( 2003). Discussion on the present climate change from warm-dry to warm-wet in northwest China. Quaternary Sciences, 23, 152-164. |
[ 施雅风, 沈永平, 李栋梁, 张国威, 丁永建, 胡汝骥, 康尔泗 ( 2003). 中国西北气候由暖干向暖湿转型的特征和趋势探讨. 第四纪研究, 23, 152-164.] | |
[34] | Vila B, Vennetier M, Ripert C, Chandioux O, Liang EY, Guibal F, Torre F ( 2008). Has global change induced divergent trends in radial growth of Pinus sylvestris and Pinus halepensis at their bioclimatic limit? The example of the Sainte-Baume forest (south-east France). Annals of Forest Science, 65, 709. |
[35] | Wang M, Bai SJ, Tao DL, Shan JP ( 1995). Effect of rise in air-temperature on tree ring growth of forest on Changbai Mountain. Chinese Journal of Applied Ecology, 6, 128-132. |
[ 王淼, 白淑菊, 陶大立, 单建平 ( 1995). 大气增温对长白山林木直径生长的影响. 应用生态学报, 6, 128-132.] | |
[36] | Wu XD (1990). Tree Rings and Climate Change. China Meteorological Press, Beijing. |
[ 吴祥定 (1990). 树木年轮与气候变化. 气象出版社, 北京.] | |
[37] | Yu D, Liu J, Benard JL, Zhou L, Zhou W, Fang X, Wei Y, Jiang S, Dai L ( 2013). Spatial variation and temporal instability in the climate-growth relationship of Korean pine in the Changbai Mountain region of Northeast China. Forest Ecology and Management, 300, 96-105. |
[38] | Yu J, Xu QQ, He X, Luo CW, Liu WH, Li JQ, Liu QJ ( 2013). Response divergence of Larix olgensis tree-ring widths to climate variation in eastern slope of Changbai Mountain, northeast China. Journal of Central South Sniversity of Forestry & Technology, 33, 89-97. |
[ 于健, 徐倩倩, 何秀, 罗春旺, 刘文慧, 李俊清, 刘琪璟 ( 2013). 长白山东坡落叶松树轮宽度对气候响应的分离效应. 中南林业科技大学学报, 33, 89-97.] | |
[39] | Yu J, Xu QQ, Liu WH, Luo CW, Yang JL, Li JQ, Liu QJ (2016). Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China. Chinese Journal of Plant Ecology, 40, 24-35. |
[ 于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟 ( 2016). 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应. 植物生态学报, 40, 24-35.] | |
[40] | Yu SL, Yuan YJ, Wei WS, Shang HM, Zhang TW, Tong Z, Du M (2008). Response of tree-ring to climate change and temperature reconstruction in west of Tianshan Mountains north slope. Journal of Desert Research, 28, 827-832. |
[ 喻树龙, 袁玉江, 魏文寿, 尚华明, 张同文, 童忠, 杜敏 (2008). 天山北坡西部树木年轮对气候因子的响应分析及气温重建. 中国沙漠, 28, 827-832.] | |
[41] | Yuan QX, Ye ZX, Wang LL, Shang HM, Yu SL (2010). Characteristics of tree width chronologies on Urumqi River mountainous basin and their responding to climate change. Arid Land Geography, 33, 394-403. |
[ 袁晴雪, 叶芝祥, 王丽丽, 尚华明, 喻树龙 ( 2010). 乌鲁木齐河山区流域树轮宽度年表特征及其对气候的响应. 干旱区地理, 33, 394-403.] | |
[42] | Zhang Q, Yu RD, Zheng HW, Yang ML, Gan M (2018). Response analysis of Larix sibirica to climate warming at different elevations in the eastern Tianshan Mountains. Plant Research, 38, 14-25. |
[ 张晴, 于瑞德, 郑宏伟, 杨美琳, 甘淼 (2018). 天山东部不同海拔西伯利亚落叶松对气候变暖的响应分析. 植物研究, 38, 14-25.] | |
[43] | Zhang RB, Yuan YJ, Wei WS, Shang HM, Yu SL, Zhang TW, Chen F, Fan ZA, Qin L (2012). Response of stable carbon isotope of Larix sibirica Ledeb. tree-rings to climate change. Arid Zone Research, 29, 328-334. |
[ 张瑞波, 袁玉江, 魏文寿, 尚华明, 喻树龙, 张同文, 陈峰, 范子昂, 秦莉 ( 2012). 西伯利亚落叶松树轮稳定碳同位素对气候的响应. 干旱区研究, 29, 328-334.] | |
[44] | Zhang WT, Jiang Y, Wang MC, Zhang LN, Dong MY (2015). Responses of radial growth in Larix principis-rupprechtii to climate change along an elevation gradient on the southern slope of Luya Mountain. Acta Ecologica Sinica, 35, 6481-6488. |
[ 张文涛, 江源, 王明昌, 张凌楠, 董满宇 ( 2015). 芦芽山阳坡不同海拔华北落叶松径向生长对气候变化的响应. 生态学报, 35, 6481-6488.] | |
[45] | Zhang Y, Wilmking M, Gou XH ( 2009). Changing relationships between tree growth and climate in Northwest China. Plant Ecology, 201, 39-50. |
[46] | Zhang Y, Yin DC, Sun M, Li LP, Tian K, Zhang WG ( 2018a). Response of radial growth of two conifers to temperature and precipitation in Potatso National Park, Southwest China. Acta Ecologica Sinica, 38, 5383-5392. |
[ 张贇, 尹定财, 孙梅, 李丽萍, 田昆, 张卫国 ( 2018a). 普达措国家公园2个针叶树种径向生长对温度和降水的响应. 生态学报, 38, 5383-5392.] | |
[47] | Zhang Y, Yin DC, Tian K, Zhang WG, He RH, He WQ, Sun JM, Liu ZY ( 2018b). Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China. Chinese Journal of Plant Ecology, 42, 629-639. |
[ 张贇, 尹定财, 田昆, 张卫国, 和荣华, 和文清, 孙江梅, 刘振亚 (2018b). 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应. 植物生态学报, 42, 629-639. ] | |
[48] | Zhang YJ, Yu RD, Zheng HW, Gan M, Yang ML, Shi BB (2017). Difference in response of radial growth of Picea schrenkiana to climate warming in the eastern and western Tianshan Mountains. Chinese Journal of Ecology, 36, 2149-2159. |
[ 张艳静, 于瑞德, 郑宏伟, 甘淼, 杨美琳, 石冰冰 ( 2017). 天山东西部雪岭云杉径向生长对气候变暖的响应差异. 生态学杂志, 36, 2149-2159.] | |
[49] | Zhou ZJ, Jiang Y, Dong MY, Tao Y, Wang MC, Ding XY ( 2018). Response of the relationship between radial growth and climatic factors to abrupt change of temperature along an altitudinal gradient on the northern slope of Changbai Mountain, Northeast China. Acta Ecologica Sinica, 38, 4668-4676. |
[ 周子建, 江源, 董满宇, 陶岩, 王明昌, 丁新原 ( 2018). 长白山北坡不同海拔红松径向生长-气候因子关系对气温突变的响应. 生态学报, 38, 4668-4676.] | |
[50] | Zhu HF, Wang LL, Shao XM, Fang XQ ( 2004). Tree ring-width response of Picea schrenkiana to climate change. Acta Geographica Sinica, 159, 863-870. |
[ 朱海峰, 王丽丽, 邵雪梅, 方修琦 ( 2004). 雪岭云杉树轮宽度对气候变化的响应. 地理学报, 159, 863-870.] |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[9] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[10] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[11] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[12] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[13] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[14] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[15] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1998
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La