植物生态学报 ›› 2010, Vol. 34 ›› Issue (5): 498-504.DOI: 10.3773/j.issn.1005-264x.2010.05.003
收稿日期:
2009-11-11
接受日期:
2010-04-08
出版日期:
2010-11-11
发布日期:
2010-05-01
通讯作者:
何维明
作者简介:
* E-mail: weiminghe@ibcas.ac.cn
SHEN Yan1,2, YANG Hui-Ling1, HE Wei-Ming2,*()
Received:
2009-11-11
Accepted:
2010-04-08
Online:
2010-11-11
Published:
2010-05-01
Contact:
HE Wei-Ming
摘要:
土壤养分影响植物生长, 进而影响凋落物质量和产量; 凋落物质量和产量影响凋落物分解过程。基于一个生长实验和一个相同环境分解实验, 研究了冬小麦(Triticum aestivum)生境中养分可利用性对凋落物碳(C)和氮(N)释放的影响。结果显示: (1)冬小麦凋落物产量、叶/根C:N比、C释放量和N释放量随土壤养分梯度呈单调变化; (2)土壤养分影响叶凋落物丢失率而不影响根凋落物丢失率; (3)初始叶/根C:N比与其C、N释放量之间存在负相关关系; (4)分解过程降低叶C:N比和根C:N比。结果表明: 生境中土壤养分的提高可加速凋落物C、N归还, 这反过来可能促进冬小麦生长, 因此这种效应是正反馈; 初始C:N比可预测凋落物C、N释放量。
申艳, 杨慧玲, 何维明. 冬小麦生境中土壤养分对凋落物碳氮释放的影响. 植物生态学报, 2010, 34(5): 498-504. DOI: 10.3773/j.issn.1005-264x.2010.05.003
SHEN Yan, YANG Hui-Ling, HE Wei-Ming. Nutrient availability in habitats affects carbon and nitrogen releases of litter in winter wheat. Chinese Journal of Plant Ecology, 2010, 34(5): 498-504. DOI: 10.3773/j.issn.1005-264x.2010.05.003
图1 生长实验中冬小麦活叶或活根C:N随土壤养分梯度的变化(A), 分解实验中残留叶或根C:N随土壤养分梯度的变化(B)。 相同组织中不同字母表示在0.05水平差异显著。
Fig. 1 Changes in C:N ratios of live leaf and root tissues in winter wheat along a soil nutrient gradient (A), and changes in C:N ratios of remaining leaf and root litter in winter wheat along a soil nutrient gradient (B). The different letters within an organ are significantly different at p = 0.05.
图2 冬小麦叶或根凋落物生物量丢失率(A)、N释放量(B)和C释放量(C)随土壤养分梯度变化。 相同组织中不同字母表示在0.05水平差异显著。
Fig. 2 Changes in biomass loss with decomposition (A), N release (B), and C release (C) of leaves and roots in winter wheat along a soil nutrient gradient. The different letters within an organ are significantly different at p = 0.05.
图3 冬小麦初始叶C:N比与叶氮释放(A)和叶碳释放(B)的关系, 冬小麦初始根C:N比与根氮释放(C)和根碳释放(D)的关系。
Fig. 3 Correlations between initial leaf C:N and leaf N release (A), between initial leaf C:N and leaf C release (B), between initial root C:N and root N release (C), or between initial root C:N and root C release (D) in winter wheat.
图4 冬小麦初始叶或根C:N比与残留叶或根C:N比的关系。 图中虚线斜率为1。
Fig. 4 Relationships between initial C:N ratios of leaves or roots and C:N ratios of remaining litter in winter wheat. The slope of the dotted line equals to 1.
[1] |
Aerts R, van Logtestijn RSP, Karlsson PS (2006). Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species. Oecologia, 146, 652-658.
DOI URL PMID |
[2] | Attiwill PM, Adams MA (1993). Nutrient cycling in forests. New Phytologist, 124, 561-582. |
[3] | Bontti EE, Decant JP, Munson SM, Gathany MA, Przeszlowska A, Haddix ML, Owens S, Burke IC, Patron WJ, Harmon ME (2009). Litter decomposition in grasslands of Central North America (US Great Plains). Global Change Biology, 15, 1356-1363. |
[4] | Chintu R, Zaharah AR, Wan Rasidah AK (2004). Decomposition and nitrogen release patterns of Paraserianthes falcataria tree residues under controlled incubation. Agroforestry Systems, 63, 45-52. |
[5] | Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, Team TL (2009). Controls on long-term root and leaf litter decomposition in neotropical forests. Global Change Biology, 15, 1339-1355. |
[6] | Dong M (董鸣) (1996). Survey, Observation and Analysis of Terrestrial Biocommunities (陆地生物群落调查观测与分析). China Standard Press, Beijing. (in Chinese) |
[7] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[8] | Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000). Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos, 90, 357-371. |
[9] | Huang JH (黄建辉), Chen LZ (陈灵芝), Han XG (韩兴国) (1998). Advances in titter decomposition in forest ecosystems. In: Li CS (李承森) ed. Advances in Plant Science (植物科学进展) Higher Education Press, Beijing. 218-236. (in Chinese) |
[10] | Keplin B, Huttl RF (2001). Decomposition of root litter in Pinus sylvestris L. and Pinus nigra stands on carboniferous substrates in the Lusatian lignite mining district. Ecological Engineering, 17, 285-296. |
[11] |
Liao CZ, Luo YQ, Fang CM, Chen JK, Li B (2008). Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze estuary. Oecologia, 156, 589-600.
DOI URL PMID |
[12] | Liao LP (廖利平), Gao H (高洪), Wang SL (汪思龙), Ma YQ (马越强), Huang ZQ (黄志群), Yu XJ (于小军) (2000). The effects of nitrogen addition on soil nutrient leaching and the decompostion of Chinese fir leaf litter. Acta Phytoecologica Sinica (植物生态学报), 24, 34-39. (in Chinese with English abstract) |
[13] | Lin B (林波), Liu Q (刘庆), Wu Y (吴彦), He H (何海) (2004). Advances in the studies of forest litter. Chinese Journal of Ecology (生态学杂志), 23, 60-64. (in Chinese with English abstract) |
[14] | Liu P, Huang J, Han X, Sun OJ, Zhou Z (2006). Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 34, 266-275. |
[15] | Luo Y (2007). Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology and Systematics, 38, 683-712. |
[16] | Manning P, Saunders M, Bardgett RD, Bonkowski M, Bradford MA, Ellis RJ, Kandeler E, Marhan S, Tscherk D (2008). Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biology & Biochemistry, 40, 688-698. |
[17] | Mikola J, Setala H, Virkavia P, Saarijarvi K, Ilmarinen K, Voigt W, Vestberg M (2009). Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecological Monographs, 79, 221-244. |
[18] | Palosuo T, Liski J, Trofymowc JA (2005). Litter decomposition affected by climate and litter quality—Testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment. Ecological Modelling, 189, 183-198. |
[19] | Rodriguez Pleguezuelo CR, Duran Zuazo VH, Muriel Fernandez JL, Martin Peinado FJ, Franco Tarifa D (2009). Litter decomposition and nitrogen release in a sloping Mediterranean subtropical agroecosystem on the coast of Granada (SE, Spain): effects of floristic and topographic alteration on the slope. Agriculture, Ecosystems and Environment, 134, 79-88. |
[20] | Sommerville D, Bradley R, Mailly D (2004). Leaf litter quality and decomposition rates of yellow birch and sugar maple seedlings grown in mono-culture and mixed-culture pots at three soil fertility levels. Trees, 18, 608-613. |
[21] | Verkaik E, Jongkind AG, Berendse F (2006). Short-term and long-term effects of tannins on nitrogen mineralisation and litter decomposition in kauri ( Agathis australis (D. Don) Lindl.) forests. Plant and Soil, 287, 337-345. |
[22] | Wang J (王瑾), Huang JH (黄建辉) (2001). Comparison of major nutrient release patterns in leaf titter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica (植物生态学报), 25, 375-380. (in Chinese with English abstract) |
[23] | Wang QB (王其兵), Li LH (李凌浩), Bai YF (白永飞), Xing XR (邢雪荣) (2000). Effects of simulated climate change on the decomposition of mixed litter in three steppe communities. Acta Phytoecologica Sinica (植物生态学报), 24, 674-679. (in Chinese with English abstract) |
[24] | Yang YS, Guo JF, Chen GS, Xie JS, Gao R, Li Z, Jin Z (2005). Litter production, seasonal pattern and nutrient return in seven natural forests compared with a plantation in southern China. Forestry, 78, 403-415. |
[25] | Zhao XY (赵学勇), Cui JY (崔建垣), Zhang TH (张铜会) (1999). Estimation and dynamic modeling of wheat litter production in desertified arable land in Horqiu Sandy Land. Journal of Desert Research (中国沙漠), 19, 103-106. (in Chinese with English abstract) |
[1] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[2] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[3] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[4] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[5] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[6] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[7] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[8] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[9] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[10] | 杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 罗亲普, 翟占伟, 潘琰. 氮沉降对草地凋落物分解的影响研究进展[J]. 植物生态学报, 2017, 41(8): 894-913. |
[11] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[12] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[13] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
[14] | 杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J]. 植物生态学报, 2016, 40(8): 748-759. |
[15] | 金皖豫, 李铭, 何杨辉, 杜正刚, 邵钧炯, 张国栋, 周灵燕, 周旭辉. 不同施氮水平对冬小麦生长期土壤呼吸的影响[J]. 植物生态学报, 2015, 39(3): 249-257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19