植物生态学报 ›› 2016, Vol. 40 ›› Issue (8): 775-787.DOI: 10.17521/cjpe.2015.0288
所属专题: 青藏高原植物生态学:群落生态学; 植物功能性状
高景1,2, 王金牛1,3,,A;*(), 徐波1,2, 谢雨1,2, 贺俊东1,2, 吴彦1,,A;*(
)
出版日期:
2016-08-10
发布日期:
2016-08-23
通讯作者:
王金牛,吴彦
Jing GAO1,2, Jin-Niu WANG1,3,*(), Bo XU1,2, Yu XIE1,2, Jun-Dong HE1,2, Yan WU1,*(
)
Online:
2016-08-10
Published:
2016-08-23
Contact:
Jin-Niu WANG,Yan WU
摘要:
在高寒生命带, 雪被作为重要的综合环境因子, 影响着植物的生理生态特征、种群动态及群落演替等过程, 进而作用于生态系统的功能与服务。通过在青藏高原东缘高寒草甸设置厚雪、中雪和浅雪3个地段, 选取早春开花的常见种紫罗兰报春(Primula purdomii)、甘肃马先蒿(Pedicularis kansuensis)、高原毛茛(Ranunculus tanguticus), 研究了三种植物株高、叶片性状和生物量分配随雪被厚度的变化规律, 以及三者之间的关系。结果表明: 甘肃马先蒿和高原毛茛在生境状况较好的地段比叶面积相对较高, 紫罗兰报春由于具有根状茎和肉质根, 在厚雪地段比叶面积相对较小; 关于单个物种的地上-地下生物量的关系, 紫罗兰报春在厚雪和浅雪地段为完全一致的异速生长关系, 而甘肃马先蒿和高原毛茛在个别地段并无显著相关关系。总体而言, 三种植物整体样本的地上-地下生物量在不同雪被地段均为异速生长关系, 不支持等速生长假说, 并且地上生物量能够很好地解释地下生物量的变异; 功能性状和生物量指标间的相关性, 在紫罗兰报春和高原毛茛表现较好, 而在甘肃马先蒿表现较弱。植物对环境变化的适应具有一定的规律, 同时也表现出物种特异性。今后的研究中, 应注重构建植物适应环境变化的功能性状谱, 以更好地理解全球变化背景下植物功能性状的响应及其适应策略。
高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究. 植物生态学报, 2016, 40(8): 775-787. DOI: 10.17521/cjpe.2015.0288
Jing GAO, Jin-Niu WANG, Bo XU, Yu XIE, Jun-Dong HE, Yan WU. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow. Chinese Journal of Plant Ecology, 2016, 40(8): 775-787. DOI: 10.17521/cjpe.2015.0288
雪被厚度 Levels of snow cover thickness | 雪被形成日期 Date of snow cover formation | 雪被消失日期 Date of snow cover disappearance | 雪被持续天数 Lasting days of snow cover (d) | 雪被最大厚度 Maximum depth of snow cover (cm) |
---|---|---|---|---|
浅 Thin | 2012-01-14 | 2013-04-28 | 106 | 46 |
中 Medium | 2012-01-09 | 2013-05-01 | 114 | 61 |
厚 Thick | 2012-02-28 | 2013-05-13 | 138 | 115 |
表1 研究样地雪被基本信息
Table 1 Basic information on snow cover at the study sites
雪被厚度 Levels of snow cover thickness | 雪被形成日期 Date of snow cover formation | 雪被消失日期 Date of snow cover disappearance | 雪被持续天数 Lasting days of snow cover (d) | 雪被最大厚度 Maximum depth of snow cover (cm) |
---|---|---|---|---|
浅 Thin | 2012-01-14 | 2013-04-28 | 106 | 46 |
中 Medium | 2012-01-09 | 2013-05-01 | 114 | 61 |
厚 Thick | 2012-02-28 | 2013-05-13 | 138 | 115 |
雪被厚度 Levels of snow cover thickness | 土壤有机碳 含量 SOC (g·kg-1) | 土壤全氮 含量 STN (g·kg-1) | 土壤全磷 含量 STP (g·kg-1) | 土壤含水量 SWC (%) |
---|---|---|---|---|
浅 Thin | 43.28 ± 6.36b | 3.63 ± 0.47b | 0.88 ± 0.07a | 65.76 ± 0.90ab |
中 Medium | 44.12 ± 2.24b | 3.78 ± 0.16b | 1.15 ± 0.26a | 68.68 ± 0.57a |
厚 Thick | 71.54 ± 7.27a | 5.34 ± 0.48a | 1.31 ± 0.06a | 62.88 ± 1.22b |
表2 不同雪被地段土壤养分及水分的比较(平均值±标准误差)
Table 2 Comparisons of soil nutrients and water contents among sites of different levels of snow cover (mean ± SE)
雪被厚度 Levels of snow cover thickness | 土壤有机碳 含量 SOC (g·kg-1) | 土壤全氮 含量 STN (g·kg-1) | 土壤全磷 含量 STP (g·kg-1) | 土壤含水量 SWC (%) |
---|---|---|---|---|
浅 Thin | 43.28 ± 6.36b | 3.63 ± 0.47b | 0.88 ± 0.07a | 65.76 ± 0.90ab |
中 Medium | 44.12 ± 2.24b | 3.78 ± 0.16b | 1.15 ± 0.26a | 68.68 ± 0.57a |
厚 Thick | 71.54 ± 7.27a | 5.34 ± 0.48a | 1.31 ± 0.06a | 62.88 ± 1.22b |
植物功能性状 Plant functional traits | 自由度 df | 均方 Mean squares | F | p | |
---|---|---|---|---|---|
物种 Species | 单叶质量 Individual leaf mass | 2 | 1.674 | 54.180 | <0.000 1 |
单叶面积 Individual leaf area | 2 | 3.689 | 101.290 | <0.000 1 | |
比叶面积 Specific leaf area | 2 | 0.443 | 52.446 | <0.000 1 | |
株高 Plant height | 2 | 1.811 | 177.241 | <0.000 1 | |
雪被 Snow cover | 单叶质量 Individual leaf mass | 2 | 0.299 | 9.682 | <0.000 1 |
单叶面积 Individual leaf area | 2 | 0.058 | 1.582 | 0.210 0 | |
比叶面积 Specific leaf area | 2 | 0.166 | 19.625 | <0.000 1 | |
株高 Plant height | 2 | 0.296 | 29.004 | <0.000 1 | |
物种× 雪被 Species × snow cover | 单叶质量 Individual leaf mass | 2 | 0.566 | 18.331 | <0.000 1 |
单叶面积 Individual leaf area | 2 | 0.085 | 2.338 | 0.101 0 | |
比叶面积 Specific leaf area | 2 | 0.236 | 27.977 | <0.000 1 | |
株高 Plant height | 2 | 0.519 | 50.762 | <0.000 1 |
表3 雪被对植物株高和叶片功能性状的影响
Table 3 Effects of snow cover on plant height and leaf functional traits
植物功能性状 Plant functional traits | 自由度 df | 均方 Mean squares | F | p | |
---|---|---|---|---|---|
物种 Species | 单叶质量 Individual leaf mass | 2 | 1.674 | 54.180 | <0.000 1 |
单叶面积 Individual leaf area | 2 | 3.689 | 101.290 | <0.000 1 | |
比叶面积 Specific leaf area | 2 | 0.443 | 52.446 | <0.000 1 | |
株高 Plant height | 2 | 1.811 | 177.241 | <0.000 1 | |
雪被 Snow cover | 单叶质量 Individual leaf mass | 2 | 0.299 | 9.682 | <0.000 1 |
单叶面积 Individual leaf area | 2 | 0.058 | 1.582 | 0.210 0 | |
比叶面积 Specific leaf area | 2 | 0.166 | 19.625 | <0.000 1 | |
株高 Plant height | 2 | 0.296 | 29.004 | <0.000 1 | |
物种× 雪被 Species × snow cover | 单叶质量 Individual leaf mass | 2 | 0.566 | 18.331 | <0.000 1 |
单叶面积 Individual leaf area | 2 | 0.085 | 2.338 | 0.101 0 | |
比叶面积 Specific leaf area | 2 | 0.236 | 27.977 | <0.000 1 | |
株高 Plant height | 2 | 0.519 | 50.762 | <0.000 1 |
物种 Species | 雪被 Snow cover | 样本量 No. of samples | 单叶质量 Individual leaf mass (g) | 单叶面积 Individual leaf area (cm2) | 比叶面积 Specific leaf area (cm2·g-1) | 株高 Plant height (cm) |
---|---|---|---|---|---|---|
紫罗兰报春 Primula purdomii | 厚 Thick | 23* | 0.038 4 ± 0.004 0a | 7.252 6 ± 0.670 7a | 198.22 ± 9.21b | 12.29 ± 0.64a |
浅 Thin | 20 | 0.020 7 ± 0.002 1b | 6.100 3 ± 0.568 1a | 316.29 ± 23.54a | 10.65 ± 0.57a | |
甘肃马先蒿 Pedicularis kansuensis | 厚 Thick | 20 | 0.008 6 ± 0.000 6b | 1.512 4 ± 0.125 9a | 176.64 ± 4.58a | 2.89 ± 0.13b |
中 Medium | 20 | 0.009 1 ± 0.000 9ab | 1.617 7 ± 0.150 5a | 195.39 ± 6.18a | 3.39 ± 0.17b | |
浅 Thin | 20 | 0.012 4 ± 0.001 4a | 1.784 4 ± 0.219 9a | 141.45 ± 5.78b | 6.87 ± 0.32a | |
高原毛茛 Ranunculus tanguticus | 中 Medium | 20 | 0.009 8 ± 0.000 9b | 2.221 9 ± 0.306 7a | 226.50 ± 18.86a | 5.07 ± 0.26b |
浅 Thin | 12 | 0.019 9 ± 0.001 9a | 2.936 7 ± 0.257 6a | 150.45 ± 5.46b | 6.14 ± 0.46a |
表4 三种植物株高和叶片性状的比较(平均值±标准误差)
Table 4 Comparisons of plant height and leaf traits among three plant species (mean ± SE)
物种 Species | 雪被 Snow cover | 样本量 No. of samples | 单叶质量 Individual leaf mass (g) | 单叶面积 Individual leaf area (cm2) | 比叶面积 Specific leaf area (cm2·g-1) | 株高 Plant height (cm) |
---|---|---|---|---|---|---|
紫罗兰报春 Primula purdomii | 厚 Thick | 23* | 0.038 4 ± 0.004 0a | 7.252 6 ± 0.670 7a | 198.22 ± 9.21b | 12.29 ± 0.64a |
浅 Thin | 20 | 0.020 7 ± 0.002 1b | 6.100 3 ± 0.568 1a | 316.29 ± 23.54a | 10.65 ± 0.57a | |
甘肃马先蒿 Pedicularis kansuensis | 厚 Thick | 20 | 0.008 6 ± 0.000 6b | 1.512 4 ± 0.125 9a | 176.64 ± 4.58a | 2.89 ± 0.13b |
中 Medium | 20 | 0.009 1 ± 0.000 9ab | 1.617 7 ± 0.150 5a | 195.39 ± 6.18a | 3.39 ± 0.17b | |
浅 Thin | 20 | 0.012 4 ± 0.001 4a | 1.784 4 ± 0.219 9a | 141.45 ± 5.78b | 6.87 ± 0.32a | |
高原毛茛 Ranunculus tanguticus | 中 Medium | 20 | 0.009 8 ± 0.000 9b | 2.221 9 ± 0.306 7a | 226.50 ± 18.86a | 5.07 ± 0.26b |
浅 Thin | 12 | 0.019 9 ± 0.001 9a | 2.936 7 ± 0.257 6a | 150.45 ± 5.46b | 6.14 ± 0.46a |
物种 species | 雪被 Snow cover | 样本量 No. of samples | 根生物量 Root biomass (g) | 茎生物量 Shoot biomass (g) | 叶生物量 Leaf biomass (g) | 花生物量 Flower biomass (g) | 根冠比 Root/shoot ratio | 总生物量 Total biomass (g) |
---|---|---|---|---|---|---|---|---|
紫罗兰报春 Primula purdomii | 厚 Thick | 23* | 0.388 6 ± 0.059 5a | 0.312 0 ± 0.070 6a | 0.476 0 ± 0.050 0a | 0.024 8 ± 0.005 8a | 0.473 9 ± 0.022 2a | 1.183 1 ± 0.165 1a |
浅 Thin | 20 | 0.128 7 ± 0.017 7b | 0.043 1 ± 0.006 5b | 0.310 8 ± 0.047 1b | 0.026 7 ± 0.003 5a | 0.386 2 ± 0.074 8b | 0.509 3 ± 0.070 1b | |
甘肃马先蒿 Pedicularis kansuensis | 厚 Thick | 20 | 0.132 0 ± 0.016 2a | 0.022 7 ± 0.002 3a | 0.063 1 ± 0.008 6a | 0.053 5 ± 0.004 7a | 1.070 4 ± 0.143 9a | 0.267 4 ± 0.026 5a |
中 Medium | 20 | 0.109 3 ± 0.016 1a | 0.027 7 ± 0.001 9a | 0.048 9 ± 0.005 6a | 0.055 4 ± 0.005 9a | 0.849 2 ± 0.092 0a | 0.241 3 ± 0.022 4a | |
浅 Thin | 20 | 0.056 8 ± 0.006 6b | 0.009 6 ± 0.001 2b | 0.034 3 ± 0.003 4ab | - | 1.421 7 ± 0.200 1a | 0.100 7 ± 0.009 1b | |
高原毛茛 Ranunculus tanguticus | 中 Medium | 20 | 0.009 4 ± 0.002 6b | 0.015 7 ± 0.001 5b | 0.035 5 ± 0.003 6b | 0.021 5 ± 0.001 3 | 0.113 9 ± 0.024 0b | 0.082 1 ± 0.007 6b |
浅 Thin | 12 | 0.063 2 ± 0.008 7a | 0.030 7 ± 0.005 8a | 0.065 7 ± 0.007 4a | - | 0.707 7 ± 0.085 4a | 0.159 6 ± 0.016 7a |
表5 不同雪被厚度下三种植物各器官生物量、根冠比及总生物量(平均值±标准误差)
Table 5 Biomass of different organs, total biomass and root/shoot ratio of three plant species under different levels of snow cover (mean ± SE)
物种 species | 雪被 Snow cover | 样本量 No. of samples | 根生物量 Root biomass (g) | 茎生物量 Shoot biomass (g) | 叶生物量 Leaf biomass (g) | 花生物量 Flower biomass (g) | 根冠比 Root/shoot ratio | 总生物量 Total biomass (g) |
---|---|---|---|---|---|---|---|---|
紫罗兰报春 Primula purdomii | 厚 Thick | 23* | 0.388 6 ± 0.059 5a | 0.312 0 ± 0.070 6a | 0.476 0 ± 0.050 0a | 0.024 8 ± 0.005 8a | 0.473 9 ± 0.022 2a | 1.183 1 ± 0.165 1a |
浅 Thin | 20 | 0.128 7 ± 0.017 7b | 0.043 1 ± 0.006 5b | 0.310 8 ± 0.047 1b | 0.026 7 ± 0.003 5a | 0.386 2 ± 0.074 8b | 0.509 3 ± 0.070 1b | |
甘肃马先蒿 Pedicularis kansuensis | 厚 Thick | 20 | 0.132 0 ± 0.016 2a | 0.022 7 ± 0.002 3a | 0.063 1 ± 0.008 6a | 0.053 5 ± 0.004 7a | 1.070 4 ± 0.143 9a | 0.267 4 ± 0.026 5a |
中 Medium | 20 | 0.109 3 ± 0.016 1a | 0.027 7 ± 0.001 9a | 0.048 9 ± 0.005 6a | 0.055 4 ± 0.005 9a | 0.849 2 ± 0.092 0a | 0.241 3 ± 0.022 4a | |
浅 Thin | 20 | 0.056 8 ± 0.006 6b | 0.009 6 ± 0.001 2b | 0.034 3 ± 0.003 4ab | - | 1.421 7 ± 0.200 1a | 0.100 7 ± 0.009 1b | |
高原毛茛 Ranunculus tanguticus | 中 Medium | 20 | 0.009 4 ± 0.002 6b | 0.015 7 ± 0.001 5b | 0.035 5 ± 0.003 6b | 0.021 5 ± 0.001 3 | 0.113 9 ± 0.024 0b | 0.082 1 ± 0.007 6b |
浅 Thin | 12 | 0.063 2 ± 0.008 7a | 0.030 7 ± 0.005 8a | 0.065 7 ± 0.007 4a | - | 0.707 7 ± 0.085 4a | 0.159 6 ± 0.016 7a |
图2 不同雪被厚度下植物比叶面积和株高的标准主轴回归分析。
Fig. 2 Standardized major axis regression analysis between specific leaf area and plant height on sites with different levels of snow cover.
图4 三种植物地上/地下生物量(以10为底取对数)的线性拟合关系。A, 紫罗兰报春。 B, 甘肃马先蒿。 C, 高原毛茛。 D, 全部物种。
Fig. 4 Linear regressions (log10-log10) between aboveground biomass (AGB) and belowground biomass (BGB) of the three plant species. A, Primula purdomii. B, Pedicularis kansuensis. C, Ranunculus tanguticus. D, All species.
物种 Species | 雪被厚度 Levels of snow cover thickness | R2 | p | 斜率(95%置信区间) Slope (95% confidence interval) | 截距(95%置信区间) Intercept (95% confidence interval) | 等速生长检验 Test of isometry | |
---|---|---|---|---|---|---|---|
F | p | ||||||
紫罗兰报春 Primula purdomii | 厚 Thick | 0.883 | <0.001 | 1.184 (1.014, 1.382)a | -0.303 9 (-0.361 5, -0.246 3) | 5.152 | 0.034 |
浅 Thin | 0.410 | 0.002 | 1.137 (0.784, 1.650)a | -0.413 3 (-0.644 7, 0.182 0) | 0.508 | 0.485 | |
甘肃马先蒿 Pedicularis kansuensis | 厚 Thick | 0.338 | 0.007 | 1.017 (0.686, 1.506)a | -0.006 8 (-0.393 2, -0.379 6) | 0.007 | 0.933 |
中 Medium | 0.133 | 0.114 | 1.572 (1.006, 2.456)a | 0.395 5 (-0.269 3, 1.060 3) | 4.547 | 0.047 | |
浅 Thin | 0.178 | 0.064 | 1.480 (0.958, 2.287)a | 0.749 2 (-0.187 7, 1.686 1) | 3.541 | 0.076 | |
高原毛茛 Ranunculus tanguticus | 中 Medium | 0.499 | <0.001 | 2.962 (2.101, 4.176)a | 1.205 8 (-0.009 0, 2.425 9) | 61.917 | <0.001 |
浅 Thin | 0.194 | 0.152 | 1.008 (0.555, 1.830)b | -0.178 6 (-0.858 5, 0.501 4) | 0.001 | 0.979 | |
全部物种 All species | 厚 Thick | 0.751 | <0.001 | 0.779 (0.666, 0.912)b | -0.305 1 (-0.389 4, -0.220 8) | 10.427 | 0.002 |
中 Medium | 0.631 | <0.001 | 3.607 (2.958, 4.397)a | 2.094 9 (1.337 9, 2.851 8) | 285.420 | <0.001 | |
浅 Thin | 0.467 | <0.001 | 0.643 (0.524, 0.791)b | -0.540 4 (-0.684 1, - 0.396 7) | 19.463 | <0.001 |
表6 不同雪被厚度下草本植物地上-地下生物量间的拟合参数及等速生长检验
Table 6 Allometric scaling exponents and the test of isometry between above- and below-ground biomass in three plant species under different levels of snow cover
物种 Species | 雪被厚度 Levels of snow cover thickness | R2 | p | 斜率(95%置信区间) Slope (95% confidence interval) | 截距(95%置信区间) Intercept (95% confidence interval) | 等速生长检验 Test of isometry | |
---|---|---|---|---|---|---|---|
F | p | ||||||
紫罗兰报春 Primula purdomii | 厚 Thick | 0.883 | <0.001 | 1.184 (1.014, 1.382)a | -0.303 9 (-0.361 5, -0.246 3) | 5.152 | 0.034 |
浅 Thin | 0.410 | 0.002 | 1.137 (0.784, 1.650)a | -0.413 3 (-0.644 7, 0.182 0) | 0.508 | 0.485 | |
甘肃马先蒿 Pedicularis kansuensis | 厚 Thick | 0.338 | 0.007 | 1.017 (0.686, 1.506)a | -0.006 8 (-0.393 2, -0.379 6) | 0.007 | 0.933 |
中 Medium | 0.133 | 0.114 | 1.572 (1.006, 2.456)a | 0.395 5 (-0.269 3, 1.060 3) | 4.547 | 0.047 | |
浅 Thin | 0.178 | 0.064 | 1.480 (0.958, 2.287)a | 0.749 2 (-0.187 7, 1.686 1) | 3.541 | 0.076 | |
高原毛茛 Ranunculus tanguticus | 中 Medium | 0.499 | <0.001 | 2.962 (2.101, 4.176)a | 1.205 8 (-0.009 0, 2.425 9) | 61.917 | <0.001 |
浅 Thin | 0.194 | 0.152 | 1.008 (0.555, 1.830)b | -0.178 6 (-0.858 5, 0.501 4) | 0.001 | 0.979 | |
全部物种 All species | 厚 Thick | 0.751 | <0.001 | 0.779 (0.666, 0.912)b | -0.305 1 (-0.389 4, -0.220 8) | 10.427 | 0.002 |
中 Medium | 0.631 | <0.001 | 3.607 (2.958, 4.397)a | 2.094 9 (1.337 9, 2.851 8) | 285.420 | <0.001 | |
浅 Thin | 0.467 | <0.001 | 0.643 (0.524, 0.791)b | -0.540 4 (-0.684 1, - 0.396 7) | 19.463 | <0.001 |
株高 PH | 紫罗兰报春 Primula purdomii | 甘肃马先蒿 Pedicularis kansuensis | 高原毛茛 Ranunculus tanguticus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
比叶面积 SLA | 单叶质量 ILM | 单叶面积 ILA | 株高 PH | 比叶面积 SLA | 单叶质量 ILM | 单叶面积 ILA | 株高 PH | 比叶面积 SLA | 单叶质量 ILM | 单叶面积 ILA | ||||
株高 PH | -0.487** | -0.742** | 0.595** | -0.449** | 0.489** | 0.311* | -0.185 | 0.416* | 0.196 | |||||
地上生物量 AGB | 0.671** | -0.497** | 0.726** | 0.549** | -0.560** | 0.354** | 0.137 | -0.002 | 0.341 | -0.166 | 0.700** | 0.591** | ||
地下生物量 BGB | -0.565** | -0.454** | 0.674** | 0.460** | -0.358** | 0.212 | -0.006 | 0.109 | 0.306 | -0.425* | 0.818** | 0.437** | ||
花生物量 FB | 0.083 | -0.099 | 0.616** | 0.605** | 0.183 | -0.094 | 0.270 | 0.339* | -0.090 | 0.031 | 0.908** | 0.710** | ||
根冠比 R/S | -0.178 | 0.408** | -0.003 | 0.094 | 0.330** | -0.137 | 0.275* | 0.245 | 0.236 | -0.418* | 0.639** | 0.293 |
表7 三种植物株高、叶片性状与个体生物量间的相关性
Table 7 Correlations among plant height, leaf traits and biomass of the three plant species
株高 PH | 紫罗兰报春 Primula purdomii | 甘肃马先蒿 Pedicularis kansuensis | 高原毛茛 Ranunculus tanguticus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
比叶面积 SLA | 单叶质量 ILM | 单叶面积 ILA | 株高 PH | 比叶面积 SLA | 单叶质量 ILM | 单叶面积 ILA | 株高 PH | 比叶面积 SLA | 单叶质量 ILM | 单叶面积 ILA | ||||
株高 PH | -0.487** | -0.742** | 0.595** | -0.449** | 0.489** | 0.311* | -0.185 | 0.416* | 0.196 | |||||
地上生物量 AGB | 0.671** | -0.497** | 0.726** | 0.549** | -0.560** | 0.354** | 0.137 | -0.002 | 0.341 | -0.166 | 0.700** | 0.591** | ||
地下生物量 BGB | -0.565** | -0.454** | 0.674** | 0.460** | -0.358** | 0.212 | -0.006 | 0.109 | 0.306 | -0.425* | 0.818** | 0.437** | ||
花生物量 FB | 0.083 | -0.099 | 0.616** | 0.605** | 0.183 | -0.094 | 0.270 | 0.339* | -0.090 | 0.031 | 0.908** | 0.710** | ||
根冠比 R/S | -0.178 | 0.408** | -0.003 | 0.094 | 0.330** | -0.137 | 0.275* | 0.245 | 0.236 | -0.418* | 0.639** | 0.293 |
[1] | Allen SE (1989). Chemical Analysis of Ecological Material. 2nd edn. Blackwell, Oxford, UK. |
[2] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. (in Chinese)[鲍士旦 (2000). 土壤农化分析(第3版). 中国农业出版社, 北京.] |
[3] | Beniston M (2005). Mountain climates and climatic change: An overview of processes focusing on the European Alps. Pure and Applied Geophysics, 162, 1587-1606. |
[4] | Bernard-Verdier M, Navas ML, Vellend M (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterra- nean rangeland. Journal of Ecology, 100, 1422-1433. |
[5] | Bertalanffy LV (1952). Problems of Life: An Evaluation of Modern Biological and Scientific Thought. Harper, New York. |
[6] | Chen WN, Wu Y, Wu N, Luo P (2009). Changes of five alpine species individual growth along snowmelt gradient. Journal of Wuhan Botanical Research, 27, 629-636. (in Chinese with English abstract)[陈文年, 吴彦, 吴宁, 罗鹏 (2009). 五种高山植物的个体生长在融雪梯度上的变化. 武汉植物学研究, 27, 629-636.] |
[7] | Chen WN, Wu Y, Wu N, Luo P (2011a). Variation in phenology and population distribution pattern of three alpine species along the snowmelt gradient. Bulletin of Botanical Research, 31, 206-212. (in Chinese with English abstract)[陈文年, 吴彦, 吴宁, 罗鹏 (2011a). 3种高山植物的物候和种群分布格局在融雪梯度上的变化. 植物研究, 31, 206-212.] |
[8] | Chen WN, Wu Y, Wu N, Luo P, Wang Q (2011b). Effects of snowmelt timing on individual growth and reproduction of Pedicularis davidii var. pentodon on the eastern Tibetan Plateau. Acta Ecologica Sinica, 13, 3621-3628. (in Chinese with English abstract)[陈文年, 吴彦, 吴宁, 罗鹏, 王乾 (2011b). 融雪时间对大卫马先蒿生长和繁殖特性的影响. 生态学报, 13, 3621-3628.] |
[9] | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. (in Chinese with English abstract)[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.] |
[10] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[11] | Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita (1963). Flora Reipublicae Popularis Sinicae. Science Press, Beijing. (in Chinese)[中国科学院中国植物志编辑委员会 (1963). 中国植物志. 科学出版社, 北京.] |
[12] | Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita (1980). Flora Reipublicae Popularis Sinicae. Science Press, Beijing. (in Chinese)[中国科学院中国植物志编辑委员会 (1980). 中国植物志. 科学出版社, 北京.] |
[13] | Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita (1990). Flora Reipublicae Popularis Sinicae. Science Press, Beijing. (in Chinese)[中国科学院中国植物志编辑委员会 (1990). 中国植物志. 科学出版社, 北京.] |
[14] | Ding JL, Han Y, Bao WK, Xiang S (2014). Biomass allocation strategies of Lilium regale and their altitudinal effects. Chinese Journal of Applied and Environmental Biology, 20, 254-260. (in Chinese with English abstract)[丁建林, 韩越, 包维楷, 向双 (2014). 岷江百合的生物量分配对策及其海拔效应. 应用与环境生物学报, 20, 254-260.] |
[15] | Dye DG (2002). Variability and trends in the annual snow-cover cycle in northern hemisphere land areas, 1972-2000. Hydrological Processes, 16, 3065-3077. |
[16] | Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520. |
[17] | Falster DS, Warton DI, Wright IJ (. |
[18] | Falster DS, Westoby M (2003). Plant height and evolutionary games. Trends in Ecology & Evolution, 18, 337-343. |
[19] | Fang YM (1996). Plant Reproductive Ecology. Shandong University Press, Jinan. (in Chinese)[方炎明 (1996). 植物生殖生态学. 山东大学出版社, 济南.] |
[20] | Groisman PY, Karl TR, Knight RW, Stenchikov GL (1994). Changes of snow cover, temperature, and radiative heat- balance over the northern-hemisphere. Journal of Climate, 7, 1633-1656. |
[21] | Hao HD, Tian QS, Shi FL, Bian XY, Li F (2009). Allocated dynamics of aboveground biomass and structural biomass in Bromus inermis Leyss. Chinese Journal of Grassland, 31(4), 85-90. (in Chinese with English abstract)[郝虎东, 田青松, 石凤翎, 卞晓燕, 李芳 (2009). 无芒雀麦地上生物量及各构件生物量分配动态. 中国草地学报, 31(4), 85-90.] |
[22] | He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316. (in Chinese with English abstract)[何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.] |
[23] | Hiltbrunner E, Schwikowski M, Korner C (2005). Inorganic nitrogen storage in alpine snow pack in the Central Alps (Switzerland). Atmospheric Environment, 39, 2249-2259. |
[24] | Hu X, Wu N, Wu Y, Zuo WQ, Guo HX, Wang JN (2012). Effects of snow cover on the decomposition and nutrient dynamics of Sibiraea angustata leaf litter in Western Sichuan Plateau, Southwest China.Chinese Journal of Applied Ecology, 23, 1226-1232. (in Chinese with English abstract)[胡霞, 吴宁, 吴彦, 左万庆, 郭海霞, 王金牛 (2012). 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响. 应用生态学报, 23, 1226-1232.] |
[25] | IPCC (Intergovernmental Panel on Climate Change) (2001). Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DG, Noguer M, Linden PJ, Xiaosu D eds. Climate Change in 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK. |
[26] | Jones HG, Pomeroy JW, Walker DA, Hoham R (2001). Snow Ecology: An Interdisciplinary Examination of Snow- Covered Ecosystems. Cambridge University Press, Cambridge, UK. |
[27] | Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin. |
[28] | Li CP, Li G, Xiao CW (2007). The application of allometric relationships in biomass estimation in terrestrial ecosystems. World Sci-Tech R & D, 29(2), 51-57. (in Chinese with English abstract)[李春萍, 李刚, 肖春旺 (2007). 异速生长关系在陆地生态系统生物量估测中的应用. 世界科技研究与发展, 29(2), 51-57.] |
[29] | Li YL, Cui JY, Su YZ (2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica, 25, 304-311. (in Chinese with English abstract)[李玉霖, 崔建垣, 苏永中 (2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.] |
[30] | Lipson DA, Schadt CW, Schmidt SK (2002). Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecology, 43, 307-314. |
[31] | Liu L, Wu Y, Wu N, Xu JJ, Mao Y, Luo P, Zhang L (2010). Effects of freezing and freeze-thaw cycles on soil microbial biomass and nutrient dynamics under different snow gradients in an alpine meadow (Tibetan Plateau). Polish Journal of Ecology, 58, 717-728. |
[32] | Liu QJ, Xu QQ, Zhang GC (2009). Impact of alpine snowpacks on primary productivity in Rhododendron aureum community in Changbai Mountain, China. Acta Ecologica Sinica, 29, 4035-4044. (in Chinese with English abstract)[刘琪璟, 徐倩倩, 张国春 (2009). 高山带雪斑对牛皮杜鹃群落生产力的影响. 生态学报, 29, 4035-4044.] |
[33] | Lu XM, Zhou CF, An SQ, Fang C, Zhao H, Yang Q, Yan C (2007). Phenotypic plasticity, allometry and invasiveness of plants. Chinese Journal of Ecology, 26, 1438-1444. (in Chinese with English abstract)[陆霞梅, 周长芳, 安树青, 方超, 赵晖, 杨茜, 颜超 (2007). 植物的表型可塑性、异速生长及其入侵能力. 生态学杂志, 26, 1438-1444.] |
[34] | Niklas KJ (2005). Modelling below- and above-ground biomass for non-woody and woody plants. Annals of Botany, 95, 315-321. |
[35] | Niklas KJ, Enquist BJ (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences of the United States of America, 98, 2922-2927. |
[36] | Pauli H, Gottfried M, Lamprecht A, Niessner S, Rumpf S, Winkler M, Steinbauer K, Grabherr G (2015). The GLORIA Field Manual—Standard Multi-Summit Approach, Supplementary Methods and Extra Approaches. 5th edn. GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences, Vienna. |
[37] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[38] | Rixen C, Haeberli W, Stoeckli V (2004). Ground temperatures under ski pistes with artificial and natural snow. Arctic Antarctic and Alpine Research, 36, 419-427. |
[39] | Rozendaal DMA, Hurtado VH, Poorter L (2006). Plasticity in leaf traits of 38 tropical tree species in response to light: Relationships with light demand and adult stature. Functional Ecology, 20, 207-216. |
[40] | Schimel JP, Bilbrough C, Welker JA (2004). Increased snow depth affects microbial activity and nitrogen mineralization in two arctic tundra communities. Soil Biology & Biochemistry, 36, 217-227. |
[41] | Serreze MC, Hurst CM (2000). Representation of mean arctic precipitation from NCEP-NCAR and ERA reanalyses. Journal of Climate, 13, 182-201. |
[42] | Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW (2015). Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Plant Ecology, 39, 362-370. (in Chinese with English abstract)[史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟 (2015). 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 39, 362-370.] |
[43] | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
[44] | Sultan SE (1992). Phenotypic plasticity and the neo-Darwinian legacy. Evolutionary Trends in Plants, 6, 61-71. |
[45] | Tao Y, Zhang YM (2014). Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China. Acta Prataculturae Sinica, 23(2), 38-48. (in Chinese with English abstract)[陶冶, 张元明 (2014). 准噶尔荒漠6种类短命植物生物量分配与异速生长关系. 草业学报, 23(2), 38-48.] |
[46] | Totland O, Alatalo JM (2002). Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia, 133, 168-175. |
[47] | Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C, Lavorel S, Diaz S, Hodgson JG, Lloret F, Midgley GF, Poorter H, Rutherford MC, Wilson PJ, Wright IJ (2005). Specific leaf area and dry matter content estimate thick- ness in laminar leaves. Annals of Botany, 96, 1129-1136. |
[48] | Wang JN, Shi FS, Xu B, Wang Q, Wu Y, Wu N (2014). Uptake and recovery of soil nitrogen by bryophytes and vascular plants in an alpine meadow. Journal of Mountain Science, 11, 475-484. |
[49] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174. |
[50] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews of the Cambridge Philosophical Society, 81, 259-291. |
[51] | Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology Evolution and Systematics, 6, 207-215. |
[52] | Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628. |
[53] | Wijk S (1986). Performance of Salix herbacea in an alpine snow-bed gradient. Journal of Ecology, 74, 675-684. |
[54] | Wipf S (2010). Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecology, 207, 53-66. |
[55] | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[56] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hi- kosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The world- wide leaf economics spectrum. Nature, 428, 821-827. |
[57] | Wu GL, Chen M, Du GZ (2010). Response of biomass allocation and morphological characteristics to light and nutrient resources for seedlings of three alpine species. Acta Ecological Sinica, 30, 60-66. (in Chinese with English abstract)[武高林, 陈敏, 杜国祯 (2010). 三种高寒植物幼苗生物量分配及性状特征对光照和养分的响应. 生态学报, 30, 60-66.] |
[58] | Wu GL, Du GZ (2007). Advances in plant morphological growth strategy. World Sci-Tech R & D, 29(4), 47-51. (in Chinese with English abstract)[武高林, 杜国祯 (2007). 植物形态生长对策研究进展. 世界科技研究与发展, 29(4), 47-51.] |
[59] | Wu Y (2005). Effects of seasonal snow cover on plant community. Journal of Mountain Science, 23, 40-46. (in Chinese with English abstract)[吴彦 (2005). 季节性雪被覆盖对植物群落的影响. 山地学报, 23, 40-46.] |
[60] | Wu Y, Onipchenko VG (2007). The impact of snow-cover on alpine vegetation type of different aspects in the west of Sichuan Province. Acta Ecological Sinica, 27, 5120-5129. (in Chinese with English abstract)[吴彦, Onipchenko VG (2007). 雪被对川西高山植被坡向性分异的影响. 生态学报, 27, 5120-5129.] |
[61] | Xiao Y, Tao Y, Zhang YM (2014). Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China. Chinese Journal of Plant Ecology, 38, 929-940. (in Chinese with English abstract)[肖遥, 陶冶, 张元明 (2014). 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征. 植物生态学报, 38, 929-940.] |
[62] | Yang YH, Rao S, Hu HF, Chen AP, Ji CJ, Zhu B, Zuo WY, Li XR, Shen HH, Wang ZH, Tang YH, Fang JY (2004). Plant species richness of alpine grasslands in relation to environmental factors and biomass on the Tibetan Plateau. Biodiversity Science, 12, 200-205. (in Chinese with English abstract)[杨元合, 饶胜, 胡会峰, 陈安平, 吉成均, 朱彪, 左闻韵, 李轩然, 沈海花, 王志恒, 唐艳鸿, 方精云 (2004). 青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系. 生物多样性, 12, 200-205.] |
[63] | Yang YL, Wu FZ, He ZH, Xu ZF, Liu Y, Yang WQ, Tan B (2012). Effects of snow pack removal on soil microbial biomass carbon and nitrogen and the number of soil culturable microorganisms during wintertime in alpine Abies faxoniana forest of western Sichuan, Southwest China. Chinese Journal of Applied Ecology, 23, 1809-1816. (in Chinese with English abstract)[杨玉莲, 吴福忠, 何振华, 徐振锋, 刘洋, 杨万勤, 谭波 (2012). 雪被去除对川西高山冷杉林冬季土壤微生物生物量碳氮和可培养微生物数量的影响. 应用生态学报, 23, 1809-1816.] |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[4] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[5] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[6] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[7] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[8] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[9] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[10] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[11] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[12] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[13] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[14] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[15] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19