植物生态学报 ›› 2009, Vol. 33 ›› Issue (6): 1140-1147.DOI: 10.3773/j.issn.1005-264x.2009.06.014
李枫1, 邹定辉2,3, 刘兆普1,*(), 赵耕毛1, 程丽巍1, 朱喜锋3, 陈伟洲3
收稿日期:
2009-01-07
接受日期:
2009-04-23
出版日期:
2009-01-07
发布日期:
2021-04-29
通讯作者:
刘兆普
作者简介:
*(sea@njau.edu.cn)基金资助:
LI Feng1, ZOU Ding-Hui2,3, LIU Zhao-Pu1,*(), ZHAO Geng-Mao1, CHENG Li-Wei1, ZHU Xi-Feng3, CHEN Wei-Zhou3
Received:
2009-01-07
Accepted:
2009-04-23
Online:
2009-01-07
Published:
2021-04-29
Contact:
LIU Zhao-Pu
摘要:
研究不同营养盐条件对龙须菜(Gracilaria lemaneiformis)的生理效应, 对深入了解龙须菜与近海环境的相互作用具有重要意义。在低氮低磷(LNLP)、低氮高磷(LNHP)、高氮低磷(HNLP)和高氮高磷(HNHP) 4种营养盐条件下培养龙须菜15 d, 以探讨不同氮、磷水平对龙须菜生长和光合特性的影响。结果表明: 1) LNHP、HNLP和HNHP处理促进了龙须菜的生长, 其中HNHP处理下龙须菜具有最大的相对生长速率和生物量; 2) LNHP、HNLP和HNHP处理提高了龙须菜的光合无机碳利用能力, 其中HNHP处理下龙须菜具有最大的无机碳饱和光合速率和表观半饱和常数, 比LNLP处理分别提高了118%倍和48.71%; 3) LNHP、HNLP和HNHP处理显著影响龙须菜的光化学效率, 与LNLP处理相比, LNHP处理提高了龙须菜的光化学效率, 而HNLP和HNHP处理降低了龙须菜的光化学效率。研究结果表明, HNHP处理条件下, 龙须菜的生长和光合无机碳利用能力最高, 光化学效率最低。
李枫, 邹定辉, 刘兆普, 赵耕毛, 程丽巍, 朱喜锋, 陈伟洲. 氮磷水平对龙须菜生长和光合特性的影响. 植物生态学报, 2009, 33(6): 1140-1147. DOI: 10.3773/j.issn.1005-264x.2009.06.014
LI Feng, ZOU Ding-Hui, LIU Zhao-Pu, ZHAO Geng-Mao, CHENG Li-Wei, ZHU Xi-Feng, CHEN Wei-Zhou. EFFECTS OF NITROGEN AND PHOSPHOROUS LEVELS ON GROWTH AND PHOTOSYNTHETIC TRAITS OF GRACILARIA LEMANEIFORMIS (RHODOPHYTA). Chinese Journal of Plant Ecology, 2009, 33(6): 1140-1147. DOI: 10.3773/j.issn.1005-264x.2009.06.014
图1 不同浓度N、P组合处理下龙须菜的相对生长速率(RGR)和生产力 LNLP: 低氮低磷, 即过滤自然海水中不添加N与P Filtered natural seawater LNHP: 低氮高磷, 即过滤自然海水中添加40 μmol·L -1NaH2PO4 Filtered natural seawater add 40 μmol·L -1 NaH2PO4 HNLP: 高氮低磷, 在过滤自然海水中添加160 μmol·L -1 NaNO3, 40 μmol·L -1 NH4Cl Filtered natural seawater add 160 μmol·L -1 NaNO3 and 40 μmol·L -1NH4Cl HNHP: 高氮高磷, 在过滤自然海水中添加160 μmol·L -1 NaNO3、40 μmol·L -1NH4Cl和40 μmol·L -1NaH2PO4Filtered natural seawater add 160 μmol·L -1 NaNO3, 40 μmol·L -1NH4Cl and 40 μmol·L -1NaH2PO4
Fig. 1 Relative growth rate (RGR) and productivity of Gracilaria lemaneiformis under different nutrients treatments
图2 不同浓度N、P组合处理下龙须菜光合放氧对无 机碳浓度的响应曲线 LNLP, LNHP, HNLP, HNHP同图1 See Fig. 1
Fig. 2 Rates of photosynthetic oxygen evolution vs. inorganic carbon concentration curves of Gracilaria lemaneiformis under different nutrients treatments
动力学参数 | LNLP | LNHP | HNLP | HNHP | ||||
---|---|---|---|---|---|---|---|---|
无机碳饱和光合速率 Carbon-saturating maximum photosynthetic rate (Vmax) (μmol O2·g-1FW·h-1) | 29.88±8.55a | 51.34±2.88bc | 43.28±6.15ac | 65.23±12.11b | ||||
表观半饱和常数 The concentration of inorganic carbon (Km) (mmol·L-1) | 3.49±1.12a | 4.15±0.44ab | 2.96±0.27a | 5.19±0.99b |
表1 不同浓度N、P组合处理下龙须菜光合放氧对无机碳浓度的响应曲线的动力学参数
Table 1 Kinetic parameters in the curves of rates of photosynthetic oxygen evolution vs. Ci concentration of Gracilaria lemaneiformis under different nutrients treatments
动力学参数 | LNLP | LNHP | HNLP | HNHP | ||||
---|---|---|---|---|---|---|---|---|
无机碳饱和光合速率 Carbon-saturating maximum photosynthetic rate (Vmax) (μmol O2·g-1FW·h-1) | 29.88±8.55a | 51.34±2.88bc | 43.28±6.15ac | 65.23±12.11b | ||||
表观半饱和常数 The concentration of inorganic carbon (Km) (mmol·L-1) | 3.49±1.12a | 4.15±0.44ab | 2.96±0.27a | 5.19±0.99b |
图3 不同浓度N、P组合处理下龙须菜的光化学效率 (A) PSII有效量子产量 Effective quantum yield of PSII (B) 相对电子传递速率-光照强度响应曲线 Relative electron transport rates (rETR) vs. irradiance curves LNLP, LNHP, HNLP, HNHP同图1 See Fig. 1
Fig. 3 Photochemical efficiency of Gracilaria lemaneiformis under different nutrients treatments
光合参数 | LNLP | LNHP | HNLP | HNHP |
---|---|---|---|---|
最大电子传递速率 Maximum roelative electron transfer rate (rETRmax) | 89.15±4.31a | 92.78±4.89a | 84.64±4.46a | 53.68±2.93b |
光能利用效率 Photosynthetic efficiency (α) | 0.136±0.024a | 0.160±0.011a | 0.140±0.001a | 0.131±0.041a |
表2 不同浓度N、P组合处理下龙须菜的相对电子传递速率-光照强度响应曲线的光合参数
Table 2 Photosynthetic parameters in the curves of relative electron transport rates (rETR) vs. irradiance of Gracilaria lemaneiformis under different nutrients treatments
光合参数 | LNLP | LNHP | HNLP | HNHP |
---|---|---|---|---|
最大电子传递速率 Maximum roelative electron transfer rate (rETRmax) | 89.15±4.31a | 92.78±4.89a | 84.64±4.46a | 53.68±2.93b |
光能利用效率 Photosynthetic efficiency (α) | 0.136±0.024a | 0.160±0.011a | 0.140±0.001a | 0.131±0.041a |
[1] | Alvera-Azcárate A, Ferreira JG, Nunes JP (2003). Modelling eutrophication in mesotidal and macrotidal estuaries. The role of intertidal seaweeds. Estuarine,Coastal and Shelf Science, 57,715-724. |
[2] | Atkinson MJ, Smith SV (1984). C:N:P ratios of benthic marine plants. Limnology and Oceanography, 28,567-574. |
[3] | Beer S, Rehnberg J (1997). The acquisition of inorganic carbon by the seagrass Zostera marina. Aquatic Botany, 56,277-283. |
[4] | Fong P, Fong JJ, Fong CR (2004). Growth, nutrient storage, and release of dissolved organic nitrogen by Enteromorpha intestinalis in response to pulses of nitrogen and phosphorus. Aquatic Botany, 78,83-95. |
[5] | Gu H (顾宏), Xu J (徐君), Zhang XM (张贤明), Li C (李川), Han M (韩敏) (2007). Absorption of Ulva Pertusa to nutrient salt in piscatorial wastewater. Environmental Science and Technology(环境科学与技术), 30(7),85-88. (in Chinese with English abstract) |
[6] |
Han T, Kang SH, Park JS, Lee HK, Brown MT (2008). Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquatic Toxicology, 86,176-184.
DOI URL PMID |
[7] | Huovinen P, Matos J, Pinto IS, Figueroa FL (2006). The role of ammonium in photoprotection against high irradiance in the red alga Grateloupia lanceola. Aquatic Botany, 84,308-316. |
[8] | Invers O, Zimmerman RC, Alberte RS, Pérez M, Romero J (2001). Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters. Experimental Marine Biology and Ecology, 265,203-217. |
[9] | Jassby AD, Platt T (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21,540-547. |
[10] | Kuang QJ (况琪军), Ma PM (马沛明), Liu GX (刘国祥), Bi YH (毕永红), Hu ZY (胡征宇) (2004). Study on the removal efficiency of nitrogen and phosphorous by filamentous green algae. Acta Hydrobiologica Sinica (水生生物学报), 28,323-326. (in Chinese) |
[11] |
Lazár D (1999). Chlorophyll a fluorescence induction. Biochimica et Biophysica Acta, 1412,1-28.
DOI URL PMID |
[12] | Li DP (李大鹏), Lin ZX (林贞贤) (2005). NH 4-N over-compensatory uptake of Gracilaria lemaneiformis under the stress of nutrients deficiency. Oceanologia et Limnologia Sinica (海洋与湖沼), 36,307-312. (in Chinese with English abstract) |
[13] | Li HY, Huang JY, Xin YJ, Zhang BM, Jin Y, Zhang W (2009). Optimization and scale-up of a new photobleaching agar extraction process from Gracilaria lemaneiformis. Journal of Applied Phycology, 21,247-254. |
[14] | Liu JW (刘静雯), Dong SL (董双林) (2001). Nutrient metabolism and the major nutritient uptake kineties of seaweeds. Plant Physiology Communications (植物生理学通讯), 37,325-330. (in Chinese) |
[15] | Lobban CS, Harrison PJ, Duncan MJ (1985). The Physiological Ecology of Seaweeds. Cambridge University Press, New York, 11-22. |
[16] | Mansilla A, Palacios M, Navarro NP, Avila M (2008). Growth and survival performance of the gametophyte of Gigartina skottsbergii (Rhodophyta, Gigartinales) under defined nutrient conditions in laboratory culture. Journal of Applied Phycology, 20,889-896. |
[17] | Mercado JM, Niell FX, Silva J, Santos R (2003). Use of light and inorganic carbon acquisition by two morphotypes of Zostera noltii Hornem. Journal of Experimental Marine Biology and Ecology, 297,71-84. |
[18] |
McClanahan TR, Carreiro-Silva M, Dilorenzo M (2007). Effect of nitrogen, phosphorous, and their interaction on coral reef algal succession in Glover’s Reef, Belize. Marine Pollution Bulletin, 54,1947-1957.
DOI URL PMID |
[19] | Menéndez M (2005). Effect of nutrient pulses on photosynthesis of Chaetomorpha linum from a shallow Mediterranean coastal lagoon. Aquatic Botany, 82,181-192. |
[20] | Nan CR (南春容), Dong SL (董双林) (2004). Progress on the competition between macroalgae and microalgae. Marine Science (海洋科学), 28(11),64-66. (in Chinese) |
[21] | Pasini AC, Wobeser EA, Figueroa FL (2000). Photoinhibition of photosynthesis in Macrocystis pyrifera (Phaeophyceae), Chondrus crispus (Rhodophyceae) and Ulva lactuca (Chlorophyceae) in outdoor culture systems. Photochemistry and Photobiology, 57,169-178. |
[22] | Peng CL (彭长连), Wen X (温学), Lin ZF (林植芳), Zhou HC (周厚诚), Chen SW (陈少薇), Lin GZ (林桂珠) (2007). Response of Gracilaria lemaneiformis to nitrogen and phosphorous eutrophic seawater. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31,505-512. (in Chinese with English abstract) |
[23] | Pereira R, Yarish C, Isabel SP (2006). The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta). Aquaculture, 252,66-78. |
[24] |
Pulido GD, McCook LJ (2005). Effects of nutrient enhancement on the fecundity of a coral reef macroalga. Experimental Marine Biology and Ecology, 317,13-24.
DOI URL |
[25] | Ralph PJ, Gademann R (2005). Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany, 82,222-237. |
[26] | Sui ZH, Zhang XC, Ren XY, Liu JJ, Mao YX, Qin S (2004). Cloning and characterization of the phycoerythrin operon upstream sequence of Gracilaria lemaneiformis (Rhodophyta). Journal of Applied Phycology, 16,167-174. |
[27] | Villaresa R, Carballeira A (2003). Seasonal variation in the concentrations of nutrients in two green macroalgae and nutrient levels in sediments in the Rías Baixas (NW Spain). Estuarine,Coastal and Shelf Science, 58,887-900. |
[28] | Wang Y (王悠), Yu ZM (俞志明) (2005). Biological strategies in controlling or mitigating marine harmful algal blooms (HABS). Acta Phytoecologica Sinica (植物生态学报), 29,665-671. (in Chinese with English abstract) |
[29] | Xu JT, Gao KS (2008). Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea. Journal of Applied Phycology, 20,681-686. |
[30] | Xu T (徐涛), Song LR (宋立荣) (2007). Studies on the utility of inorganic carbon in three strains of Microcystis aeruginosa. Acta Hydrobiologica sinica (水生生物学报), 31,245-250. (in Chinese with English abstract) |
[31] | Xu ZG (徐智广), Zou DH (邹定辉), Zhang X (张鑫), Liu SX (刘树霞), Gao KS (高坤山) (2008). Effects of increased atmospheric CO 2 and N supply on growth, biochemical compositions and uptake of nutrients in Gracilaria lemaneiformis (Rhodophyta). Acta Ecologica Sinica (生态学报), 28,3752-3759. (in Chinese with English abstract) |
[32] |
Yu JQ, Zhou YH, Huang LF, Allen DJ (2002). Chill- induced inhibition of photosynthesis: genotypic variation within Cucumis sativus. Plant and Cell Physiology, 43,1182-1188.
DOI URL PMID |
[33] | Zou DH, Xia JR, Yang YF (2004). Photosynthetic use of exogenous inorganic carbon in the agarophyte Gracilaria lemaneiformis (Rhodophyta). Aquaculture, 237,421-431. |
[34] | Zou DH (邹定辉), Gao KS (高坤山) (2002). The effects of elevated inorganic carbon concentration on photosynthesis of Ulva lactuca under different temperature. Marine Sciences (海洋科学), 26 (3),49-52. (in Chinese with English abstract) |
[35] | Zou DH (邹定辉), Gao KS (高坤山), Ruan ZX (阮祚喜) (2001). Effects of elevated CO 2 concentration on photosynthesis and nutrients uptake of Ulva lactuca. Journal of Ocean University of Qingdao (青岛海洋大学学报), 31,877-882. (in Chinese with English abstract) |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[5] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[6] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[7] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[8] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[9] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[10] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[11] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[12] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[13] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[14] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[15] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19