植物生态学报 ›› 2022, Vol. 46 ›› Issue (2): 220-231.DOI: 10.17521/cjpe.2021.0098

• 研究论文 • 上一篇    下一篇

氮添加对杉木苗期磷转化和分解类真菌的影响

谢欢1, 张秋芳2, 曾泉鑫1, 周嘉聪1, 马亚培1, 吴玥1, 刘苑苑1, 林惠瑛1, 尹云锋1, 陈岳民1,*()   

  1. 1福建师范大学地理科学学院, 湿润亚热带山地生态国家重点实验室培训基地, 福州 350007
    2北京大学城市与环境学院, 北京 100871
  • 收稿日期:2021-03-18 接受日期:2021-05-27 出版日期:2022-02-20 发布日期:2021-07-22
  • 通讯作者: 陈岳民
  • 作者简介:(ymchen@fjnu.edu.cn)
  • 基金资助:
    福建省自然科学基金(2020J01142);福建省自然科学基金(2020J01397)

Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata

XIE Huan1, ZHANG Qiu-Fang2, ZENG Quan-Xin1, ZHOU Jia-Cong1, MA Ya-Pei1, WU Yue1, LIU Yuan-Yuan1, LIN Hui-Ying1, YIN Yun-Feng1, CHEN Yue-Min1,*()   

  1. 1School of Geographical Science, State Key Laboratory of Subtropical Mountain Ecology, Fujian Normal University, Fuzhou 350007, China
    2College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
  • Received:2021-03-18 Accepted:2021-05-27 Online:2022-02-20 Published:2021-07-22
  • Contact: CHEN Yue-Min
  • Supported by:
    Natural Science Foundation of Fujian Province(2020J01142);Natural Science Foundation of Fujian Province(2020J01397)

摘要:

持续增加的氮沉降加剧了森林土壤氮磷养分失衡, 并且已成为当前生态学领域关注的热点。真菌作为土壤中主要的微生物, 在维持养分平衡, 促进植物生长过程中发挥着不可忽视的作用。该研究以杉木(Cunninghamia lanceolata)土壤为研究对象, 通过施加硝酸铵模拟大气氮沉降, 设置对照(CK, 0 kg N·hm-2·a-1)、低氮(LN, 40 kg N·hm-2·a-1)和高氮(HN, 80 kg N·hm-2·a-1) 3个处理, 利用高通量测序并结合FUNGuild真菌功能预测, 研究亚热带地区杉木土壤真菌群落结构和功能对氮沉降的响应。结果表明: 氮添加降低了杉木幼苗的生物量和叶片磷含量。在杉木土壤中, 子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和被孢霉门(Mortierellomycota)是真菌群落在门水平上的优势类群, 三者的相对丰度约占整个真菌群落的76.71%-86.72%。短期氮添加对真菌门水平物种组成的影响不显著, 但LN处理较对照处理显著提高了球囊菌门(Glomeromycota)的相对丰度。在目水平上, 与对照相比, LN处理也显著提高被孢霉目(Mortierellales)的相对丰度, HN处理显著增加银耳目(Tremellales)的相对丰度, 但显著降低粪壳菌纲(Sordariales)的相对丰度。并且LN处理显著提高了土壤有效磷含量, 且与被孢霉目和球囊菌门的相对丰度呈显著正相关关系, 表明氮添加可能通过改变与磷转化相关的真菌类群来维持杉木生长的磷有效性。此外, LN处理显著降低了腐生营养型真菌的相对丰度, 但是显著增加了丛枝菌根真菌的相对丰度。总之, 土壤真菌功能类群可以通过改变不同功能类群相对丰度来参与土壤养分循环。

关键词: 氮沉降, 真菌, FUNGuild功能预测, 磷转化, 分解, 杉木

Abstract:

Aims The increasing deposition of nitrogen (N) has led to an imbalance of N and phosphorus (P) in forest soils, and has become the focus of ecological studies. Fungi, as one of the main microorganisms in soils, plays an important role in maintaining nutrient balance and promoting plant growth. Enhancing the understanding of the growth status of Cunninghamia lanceolata seedlings and the changes of soil fungal community structure and functional groups under the treatments of N addition, are helpful to study the process of soil nutrient cycling, and provide references for scientific management and sustainable development of C. lanceolata plantation.

Methods In this study, we used high-throughput sequencing and FUNGuild functional prediction to determine changes in soil fungal structural composition and functional groups of C. lanceolatain response to the application of control (0 kg N·hm-2·a-1), low N (40 kg N·hm-2·a-1), and high N (80 kg·N hm-2·a-1) treatments.

Important findings The results showed that N addition reduced biomass and leaf P content of C. lanceolata seedlings. Ascomycota, Basidiomycota, and Mortierellomycota were the three dominant phyla in the experimental soils, and accounted for 76.71%-86.72% of the relative abundance among the entire fungal community. The effect of short-term N addition on fungal composition was not significant at the phylum level. However, the relative abundance of Glomeromycota increased significantly with the low N treatment. At the order level, compared with the control, low N treatment significantly increased the relative abundance of Mortierellales. High N treatment significantly increased the relative abundance of Tremellales, but significantly reduced that of Sordariales. In addition, low N treatment significantly increased soil available P content, and there were significant positive correlations with the relative abundances of Glomeromycota and Mortierellales. These results indicate that N addition may maintain P availability of C. lanceolatagrowth by altering the fungi associated with P transformation. In addition, the relative abundance of saprotroph group was significantly reduced under low N treatment, but the relative abundance of arbuscular mycorrhizal fungi was significantly increased. In conclusion, soil fungal functional groups can participate in soil nutrient cycling by changing the relative abundance of different functional groups.

Key words: nitrogen deposition, fungi, FUNGuild functional prediction, phosphorus transformation, decomposition, Cunninghamia lanceolata