植物生态学报 ›› 2022, Vol. 46 ›› Issue (8): 961-970.DOI: 10.17521/cjpe.2021.0434
• 研究论文 • 上一篇
王军强, 刘彬(), 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳
收稿日期:
2021-11-24
接受日期:
2022-04-19
出版日期:
2022-08-20
发布日期:
2022-08-20
通讯作者:
刘彬
作者简介:
* (onlinelb@163.com)基金资助:
WANG Jun-Qiang, LIU Bin(), CHANG Feng, MA Zi-Jing, FAN Jia-Hui, HE Xiang-Ju, YOU Si-Xue, Aerziguli ABUDUREXITI, YANG Ying-Ke, SHEN Xin-Yan
Received:
2021-11-24
Accepted:
2022-04-19
Online:
2022-08-20
Published:
2022-08-20
Contact:
LIU Bin
Supported by:
摘要:
湖滨湿地植物叶片功能性状和叶片生态化学计量特征的分析对掌握植物的生长速率及植物对土壤养分的吸收和利用效率具有重要意义。为探讨不同水盐环境对植物功能性状及其生态化学计量特征的影响, 该研究以博斯腾湖西岸湖滨带湿地为研究区, 以该地区优势植物及土壤环境因子为研究对象, 阐明该地区植物适应环境的策略。设置18个样地进行植物多样性的调查, 共调查到植物24种, 其中灌木8种, 草本16种。采用冗余分析法对植物叶片功能性状与土壤环境因子间的关系进行分析, 通过分析植物功能性状在不同水盐环境下的变化特征及其对植物功能性状的影响, 发现: 随着水盐含量的增加, 不同植物叶片功能性状变化较大, 其中叶绿素含量(SPAD)、叶片厚度(LT)和比叶面积(SLA)在低水低盐环境下最大; 叶片含水量(LWC)、叶干物质含量(LDMC)和叶干质量(LDM)在中水中盐、高水高盐环境下较大; 植物叶片碳(C)、氮(N)、磷(P)含量及其化学计量比变化较大, C:N范围为9.35-26.51, C:P的范围为50.13-228.95, N:P的范围为2.31-11.99, 其中C:P的变化范围最大; 叶片C含量与LT、LDMC、LDM均显著正相关, 叶片N含量与SPAD、LT显著正相关, 叶片P含量与LWC显著正相关, C:N、C:P均与LDMC显著正相关, 而N:P与叶片功能性状指标均不相关, SLA与叶片生态化学计量特征均不相关; 对环境因子与优势植物叶片功能性状的相关性分析发现, 影响种间植物功能性状的环境因子不同且各有差异。
王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析. 植物生态学报, 2022, 46(8): 961-970. DOI: 10.17521/cjpe.2021.0434
WANG Jun-Qiang, LIU Bin, CHANG Feng, MA Zi-Jing, FAN Jia-Hui, HE Xiang-Ju, YOU Si-Xue, Aerziguli ABUDUREXITI, YANG Ying-Ke, SHEN Xin-Yan. Plant functional traits and ecological stoichiometric characteristics under water-salt gradient in the lakeshore zone of Bosten Lake. Chinese Journal of Plant Ecology, 2022, 46(8): 961-970. DOI: 10.17521/cjpe.2021.0434
样地编号 Site Number | 群落类型 Community type | 主要植物 Main plant |
---|---|---|
1 | V | 刚毛柽柳、盐穗木 Tamarix hispida, Halostachys caspica |
2 | IV | 刚毛柽柳、黑果枸杞、海乳草 Tamarix hispida, Lycium ruthenicum, Glaux maritima |
3 | III | 刚毛柽柳、黑果枸杞、盐地碱蓬、海乳草、狗尾草 Tamarix hispida, Lycium ruthenicum, Suaeda salsa, Glaux maritima, Setaria viridis |
4 | I | 刚毛柽柳、芦苇、乳菀、芨芨草 Tamarix hispida, Phragmites australis, Galatella songorica, Achnatherum splendens |
5 | IV | 刚毛柽柳、黑果枸杞、盐地碱蓬、芦苇 Tamarix hispida, Lycium ruthenicum, Suaeda salsa, Phragmites australis |
6 | I | 刚毛柽柳、黑果枸杞、白刺、芦苇 Tamarix hispida, Lycium ruthenicum, Nitraria tangutorum, Phragmites australis |
7 | V | 刚毛柽柳、盐穗木 Tamarix hispida, Halostachys caspica |
8 | V | 盐穗木、尖叶盐爪爪、盐地碱蓬 Halostachys caspica, Kalidium cuspidatum, Suaeda salsa |
9 | V | 盐穗木、盐地碱蓬 Halostachys caspica, Suaeda salsa |
10 | III | 刚毛柽柳、盐地碱蓬、芦苇 Tamarix hispida, Suaeda salsa, Phragmites australis |
11 | III | 刚毛柽柳、白刺、盐穗木、盐地碱蓬 Tamarix hispida, Nitraria tangutorum, Halostachys caspica, Suaeda salsa |
12 | VI | 白刺 Nitraria tangutorum |
13 | VI | 白刺、盐穗木 Nitraria tangutorum, Halostachys caspica |
14 | V | 刚毛柽柳、盐穗木 Tamarix hispida, Halostachys caspica |
15 | VI | 白刺、盐穗木 Nitraria tangutorum, Halostachys caspica |
16 | II | 盐穗木、芦苇 Halostachys caspica, Phragmites australis |
17 | II | 白刺、盐穗木、芦苇、戟叶鹅绒藤 Nitraria tangutorum, Halostachys caspica, Phragmites australis, Cynanchum sibiricum |
18 | II | 白刺、盐穗木、芦苇、戟叶鹅绒藤 Nitraria tangutorum, Halostachys caspica, Phragmites australis, Cynanchum sibiricum |
表1 博斯腾湖湖滨带样地植物群落类型及其结构组成
Table 1 Plant community types and their structural composition in the sample sites in the lakeshore zone of Bosten Lake
样地编号 Site Number | 群落类型 Community type | 主要植物 Main plant |
---|---|---|
1 | V | 刚毛柽柳、盐穗木 Tamarix hispida, Halostachys caspica |
2 | IV | 刚毛柽柳、黑果枸杞、海乳草 Tamarix hispida, Lycium ruthenicum, Glaux maritima |
3 | III | 刚毛柽柳、黑果枸杞、盐地碱蓬、海乳草、狗尾草 Tamarix hispida, Lycium ruthenicum, Suaeda salsa, Glaux maritima, Setaria viridis |
4 | I | 刚毛柽柳、芦苇、乳菀、芨芨草 Tamarix hispida, Phragmites australis, Galatella songorica, Achnatherum splendens |
5 | IV | 刚毛柽柳、黑果枸杞、盐地碱蓬、芦苇 Tamarix hispida, Lycium ruthenicum, Suaeda salsa, Phragmites australis |
6 | I | 刚毛柽柳、黑果枸杞、白刺、芦苇 Tamarix hispida, Lycium ruthenicum, Nitraria tangutorum, Phragmites australis |
7 | V | 刚毛柽柳、盐穗木 Tamarix hispida, Halostachys caspica |
8 | V | 盐穗木、尖叶盐爪爪、盐地碱蓬 Halostachys caspica, Kalidium cuspidatum, Suaeda salsa |
9 | V | 盐穗木、盐地碱蓬 Halostachys caspica, Suaeda salsa |
10 | III | 刚毛柽柳、盐地碱蓬、芦苇 Tamarix hispida, Suaeda salsa, Phragmites australis |
11 | III | 刚毛柽柳、白刺、盐穗木、盐地碱蓬 Tamarix hispida, Nitraria tangutorum, Halostachys caspica, Suaeda salsa |
12 | VI | 白刺 Nitraria tangutorum |
13 | VI | 白刺、盐穗木 Nitraria tangutorum, Halostachys caspica |
14 | V | 刚毛柽柳、盐穗木 Tamarix hispida, Halostachys caspica |
15 | VI | 白刺、盐穗木 Nitraria tangutorum, Halostachys caspica |
16 | II | 盐穗木、芦苇 Halostachys caspica, Phragmites australis |
17 | II | 白刺、盐穗木、芦苇、戟叶鹅绒藤 Nitraria tangutorum, Halostachys caspica, Phragmites australis, Cynanchum sibiricum |
18 | II | 白刺、盐穗木、芦苇、戟叶鹅绒藤 Nitraria tangutorum, Halostachys caspica, Phragmites australis, Cynanchum sibiricum |
物种 Species | 水盐水平 Water and salt level | 叶绿素含量 SPAD | 叶片厚度 LT (mm) | 比叶面积 SLA (cm2·g-1) | 叶片含水量 LWC (g·g-1) | 叶干物质含量 LDMC (g·g-1) | 叶干质量 LDM (g) |
---|---|---|---|---|---|---|---|
芦苇 Phragmites australis | SW1 | 48.106 | 0.314 | 0.207 | 0.535 | 0.466 | 0.170 |
SW2 | 55.822 | 0.195 | 0.225 | 0.636 | 0.364 | 0.582 | |
黑果枸杞 Lycium ruthenicum | SW1 | 19.689 | 1.101 | 0.868 | 0.857 | 0.143 | 0.081 |
SW2 | 33.133 | 0.820 | 0.524 | 0.890 | 0.110 | 0.033 | |
盐穗木 Halostachys caspica | SW2 | 7.112 | 2.300 | 0.623 | 0.917 | 0.083 | 0.040 |
SW3 | 12.577 | 1.507 | 0.159 | 0.824 | 0.176 | 0.175 | |
白刺 Nitraria tangutorum | SW1 | 25.433 | 0.757 | 0.739 | 0.874 | 0.126 | 0.062 |
SW2 | 63.350 | 2.233 | 0.556 | 0.690 | 0.310 | 0.062 | |
SW3 | 21.922 | 0.720 | 0.340 | 0.813 | 0.187 | 0.089 | |
刚毛柽柳 Tamarix hispida | SW1 | 3.208 | 0.319 | 1.049 | 0.499 | 0.502 | 0.101 |
SW2 | 1.842 | 0.347 | 1.400 | 0.779 | 0.222 | 0.033 | |
SW3 | 4.450 | 0.358 | 0.628 | 0.437 | 0.563 | 0.362 | |
盐地碱蓬 Suaeda salsa | SW1 | 3.017 | 0.579 | 0.904 | 0.887 | 0.113 | 0.015 |
SW3 | 4.000 | 0.542 | 1.224 | 0.936 | 0.064 | 0.021 |
表2 博斯腾湖湖滨带不同水盐水平下植物叶片功能性状变化特征
Table 2 Characteristics of changes in functional traits of plant leaves at different water and salt levels in the lakeshore zone of Bosten Lake
物种 Species | 水盐水平 Water and salt level | 叶绿素含量 SPAD | 叶片厚度 LT (mm) | 比叶面积 SLA (cm2·g-1) | 叶片含水量 LWC (g·g-1) | 叶干物质含量 LDMC (g·g-1) | 叶干质量 LDM (g) |
---|---|---|---|---|---|---|---|
芦苇 Phragmites australis | SW1 | 48.106 | 0.314 | 0.207 | 0.535 | 0.466 | 0.170 |
SW2 | 55.822 | 0.195 | 0.225 | 0.636 | 0.364 | 0.582 | |
黑果枸杞 Lycium ruthenicum | SW1 | 19.689 | 1.101 | 0.868 | 0.857 | 0.143 | 0.081 |
SW2 | 33.133 | 0.820 | 0.524 | 0.890 | 0.110 | 0.033 | |
盐穗木 Halostachys caspica | SW2 | 7.112 | 2.300 | 0.623 | 0.917 | 0.083 | 0.040 |
SW3 | 12.577 | 1.507 | 0.159 | 0.824 | 0.176 | 0.175 | |
白刺 Nitraria tangutorum | SW1 | 25.433 | 0.757 | 0.739 | 0.874 | 0.126 | 0.062 |
SW2 | 63.350 | 2.233 | 0.556 | 0.690 | 0.310 | 0.062 | |
SW3 | 21.922 | 0.720 | 0.340 | 0.813 | 0.187 | 0.089 | |
刚毛柽柳 Tamarix hispida | SW1 | 3.208 | 0.319 | 1.049 | 0.499 | 0.502 | 0.101 |
SW2 | 1.842 | 0.347 | 1.400 | 0.779 | 0.222 | 0.033 | |
SW3 | 4.450 | 0.358 | 0.628 | 0.437 | 0.563 | 0.362 | |
盐地碱蓬 Suaeda salsa | SW1 | 3.017 | 0.579 | 0.904 | 0.887 | 0.113 | 0.015 |
SW3 | 4.000 | 0.542 | 1.224 | 0.936 | 0.064 | 0.021 |
图3 博斯腾湖湖滨带不同植物在不同水盐水平下的生态化学计量特征比。SW1、SW2、SW3分别表示低水低盐(<22.22%、<2.25 g·kg-1)、中水中盐(22.22%-27.65%、2.25-5.01 g·kg-1)、高水高盐(>27.65%、>5.01 g·kg-1) 3个水盐水平。不同小写字母表示不同水盐水平下差异显著(p < 0.05)。C, 碳含量; N, 氮含量; P, 磷含量。
Fig. 3 Ecological stoichiometric characteristics of different plants under different water-salinity gradients compared in the lakeshore zone of Bosten Lake. SW1, SW2 and SW3 represent low water and salt (<22.22%, <2.25 g·kg-1), medium water and salt (22.22%-27.65%, 2.25-5.01 g·kg-1), high water and salt (>27.65%, >5.01 g·kg-1) three levels. Different lowercase letters indicate significant difference under different water and salt levels (p < 0.05). C, carbon content; N, nitrogen content; P, phosphorus content.
指标 Indicator | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
SPAD | 0.386 | 0.522** | -0.062 | -0.126 | 0.143 | 0.309 |
LT | 0.485* | 0.441* | 0.368 | -0.638** | -0.576** | -0.050 |
SLA | -0.196 | -0.333 | 0.076 | 0.172 | 0.028 | -0.154 |
LWC | -0.611** | 0.096 | 0.428* | -0.403* | -0.519** | -0.248 |
LDMC | 0.611** | -0.096 | -0.428* | 0.403* | 0.519** | 0.248 |
LDM | 0.600** | 0.200 | -0.074 | 0.141 | 0.225 | 0.151 |
表3 博斯腾湖湖滨带叶片生态化学计量特征与功能性状各指标间的相关系数
Table 3 Correlation coefficients between leaf ecological chemometric characteristics and functional traits of each index in the lakeshore zone of Bosten Lake
指标 Indicator | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
SPAD | 0.386 | 0.522** | -0.062 | -0.126 | 0.143 | 0.309 |
LT | 0.485* | 0.441* | 0.368 | -0.638** | -0.576** | -0.050 |
SLA | -0.196 | -0.333 | 0.076 | 0.172 | 0.028 | -0.154 |
LWC | -0.611** | 0.096 | 0.428* | -0.403* | -0.519** | -0.248 |
LDMC | 0.611** | -0.096 | -0.428* | 0.403* | 0.519** | 0.248 |
LDM | 0.600** | 0.200 | -0.074 | 0.141 | 0.225 | 0.151 |
图4 博斯腾湖湖滨带6种优势植物与环境因子的冗余分析(RDA)排序图。A-F, 芦苇、刚毛柽柳、盐地碱蓬、盐穗木、白刺、黑果枸杞。SPAD、LT、SLA、LWC、LDMC、LDM分别表示叶绿素含量、叶片厚度、比叶面积、叶片含水量、叶干物质含量、叶干质量。SOM、TN、TP、TK、AP、AK、Salt、SWC分别表示土壤有机质、全氮、全磷、全钾、速效磷、速效钾、总盐、水分含量。
Fig. 4 Redundancy analysis (RDA) ranking of six dominant plant species with environmental factors in the lakeshore zone of Bosten Lake. A-F, Phragmites australis, Tamarix hispida, Suaeda salsa, Halostachys caspica, Nitraria tangutorum, Lycium ruthenicum. SPAD, LT, SLA, LWC, LDMC and LDM represent chlorophyll content, leaf thickness, specific leaf area, leaf water content, leaf dry matter content and leaf dry mass, respectively. SOM, TN, TP, TK, AP, AK, Salt and SWC represent soil organic matter, total nitrogen, total phosphorus, total potassium, available phosphorus, available potassium, total salt and soil water content, respectively.
[1] | Cai Y (2019). Relationship Between Desert Plant Diversity and Ecosystem Multifunctionality Along Water and Salt Gradients. Master degree dissertation, Xinjiang University, Ürümqi. |
[蔡艳 (2019). 水盐梯度下荒漠植物多样性与生态系统多功能性的关系. 硕士学位论文, 新疆大学, 乌鲁木齐.] | |
[2] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
DOI URL |
[3] |
Faucon MP, Houben D, Lambers H (2017). Plant functional traits: soil and ecosystem services. Trends in Plant Science, 22, 385-394.
DOI URL |
[4] |
Guo YL, Li DX, Wang B, Bai KD, Xiang WS, Li XK (2017). C, N and P stoichiometric characteristics of soil and litter fall for six common tree species in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, Southern China. Biodiversity Science, 25, 1085-1094.
DOI |
[郭屹立, 李冬兴, 王斌, 白坤栋, 向悟生, 李先琨 (2017). 北热带喀斯特季节性雨林土壤和6个常见树种凋落物的C、N、P化学计量学特征. 生物多样性, 25, 1085-1094.]
DOI |
|
[5] | Huang C, Wei H, Wu KJ, He XR, Wang P, Qi YC, Qi DH (2020). The functional diversity of understory plants during the transformation from Pinus massoniana to Cinnamomum camphora forest. Acta Ecologica Sinica, 40, 4573-4584. |
[黄超, 魏虹, 吴科君, 何欣芮, 汪鹏, 綦远才, 齐代华 (2020). 马尾松林向香樟林改造林下植物功能多样性研究. 生态学报, 40, 4573-4584.] | |
[6] | Jiao L, Guan X, Liu XR, Dong XG, Li F (2020). Functional traits of Phragmites australis leaves and response to soil environmental factors in inland river wetland. Arid Zone Research, 37, 202-211. |
[焦亮, 关雪, 刘雪蕊, 董小刚, 李方 (2020). 内陆河湿地芦苇叶功能性状特征及其对土壤环境因子的响应. 干旱区研究, 37, 202-211.] | |
[7] | Li H, Yu YH, Long J, Li J (2021). Responses of leaf functional traits of Zanthoxylum planispinum var. dintanensis to premature senescence. Chinese Journal of Ecology, 40, 1695-1704. |
[李红, 喻阳华, 龙健, 李娟 (2021). 顶坛花椒叶片功能性状对早衰的响应. 生态学杂志, 40, 1695-1704.] | |
[8] | Li JX, He J, Sun YM, Zhao A, Tian Q (2020). Physiological and ecological responses of ten garden plant functional traits to air pollution. Ecology and Environmental Sciences, 29, 1205-1214. |
[李娟霞, 何靖, 孙一梅, 赵安, 田青 (2020). 10种园林植物功能性状对大气污染的生理生态响应. 生态环境学报, 29, 1205-1214.] | |
[9] | Ma JL (2019). Effects of Grazing Exclusion on the Functional Traits of Dominant Plants in Desert Steppe. Master degree dissertation, Ningxia University, Yinchuan. |
[马静利 (2019). 封育对荒漠草原优势植物功能性状的影响. 硕士学位论文, 宁夏大学, 银川.] | |
[10] |
Maskova T, Herben T (2021). Interspecific differences in maternal support in herbaceous plants: CNP contents in seeds varies to match expected nutrient limitation of seedlings. Oikos, 130, 1715-1725.
DOI URL |
[11] | Niu YL, Li KM, Wang XY, Wei C, Wang WX, Su HH, Zhang XF, Cao JJ (2020). Responses of ecological stoichiometric characteristics and functional traits of Heteropappus hispidus to slope aspect. Chinese Journal of Ecology, 39, 1946-1955. |
[牛亚琳, 李空明, 王雪艳, 魏晨, 王卫轩, 苏昊海, 张小芳, 曹建军 (2020). 狗娃花叶片生态化学计量特征及功能性状对坡向的响应. 生态学杂志, 39, 1946-1955.] | |
[12] | Shu Y, Liu YJ (2008). Research overview on phytocoenology. Acta Agriculturae Jiangxi, (6), 51-54. |
[舒勇, 刘扬晶 (2008). 植物群落学研究综述. 江西农业学报, (6), 51-54.] | |
[13] | Song GM, Han TT, Hong L, Zhang LL, Li XB, Ren H (2018). Advances in the studies of plant functional traits during succession. Ecological Science, 37, 207-213. |
[宋光满, 韩涛涛, 洪岚, 张玲玲, 李晓波, 任海 (2018). 演替过程中植物功能性状研究进展. 生态科学, 37, 207-213.] | |
[14] |
Taylor A, Keppel G, Weigelt P, Zotz G, Kreft H (2021). Functional traits are key to understanding orchid diversity on islands. Ecography, 44, 703-714.
DOI URL |
[15] | Wang K, Na EH, Zhang RS, Gao S, Liu JH (2021). Carbon, nitrogen and phosphorus stoichiometry and nutrient resorption of Pinus sylvestris var. mongolica under different densities. Chinese Journal of Ecology, 40, 313-322. |
[王凯, 那恩航, 张日升, 高爽, 刘建华 (2021). 不同密度下沙地樟子松碳、氮、磷化学计量及养分重吸收特征. 生态学杂志, 40, 313-322.] | |
[16] | Wang X, Yang L, Zhao Q, Zhang QD (2020). Response of grassland community functional traits to soil water in a typical the Loess Plateau watershed. Acta Ecologica Sinica, 40, 2691-2697. |
[王鑫, 杨磊, 赵倩, 张钦弟 (2020). 黄土高原典型小流域草地群落功能性状对土壤水分的响应. 生态学报, 40, 2691-2697.] | |
[17] | Wang XY (2020). Effects of Slope Aspects and Slope Gradients on Apricot Leaf Fountional Traits. Master degree dissertation, Northwest Normal University, Lanzhou. |
[王雪艳 (2020). 坡向及坡度对山杏叶片功能性状的影响. 硕士学位论文, 西北师范大学, 兰州.] | |
[18] | Wei C, Zhang XP, Luo ZY, Cao JJ, Feng MM, Zhao HJ, Li KM, Li GD (2021). A comparative study on foliar stoichiometry traits of three trees in north and south mountains of Lanzhou City. Acta Ecologica Sinica, 41, 2460-2470. |
[魏晨, 张小平, 罗子渝, 曹建军, 冯明铭, 赵慧君, 李空明, 李光栋 (2021). 兰州市南山和北山3种乔木叶片生态化学计量特征的对比研究. 生态学报, 41, 2460-2470.] | |
[19] | Wei YH, Wang ZX, Liang WZ, Ma FL, Han L (2020). Response and adaptation of twig-leaf functional traits of Populus euphratica to groundwater gradients. Acta Botanica Boreali-Occidentalia Sinica, 40, 1043-1051. |
[魏圆慧, 王志鑫, 梁文召, 马富龙, 韩路 (2020). 胡杨枝叶功能性状对地下水位梯度的响应与适应. 西北植物学报, 40, 1043-1051.] | |
[20] |
Yang C, Du SM, Zhang DQ, Li XD, Shi YH, Shao YH, Wang HF, Fang BT (2021). Method for estimating relative chlorophyll content in wheat leaves based on chlorophyll fluorescence parameters. Chinese Journal of Applied Ecology, 32, 175-181.
DOI |
[杨程, 杜思梦, 张德奇, 李向东, 时艳华, 邵运辉, 王汉芳, 方保停 (2021). 基于叶绿素荧光参数的小麦叶片叶绿素相对含量估算方法. 应用生态学报, 32, 175-181.]
DOI |
|
[21] |
Ye ZX, Yang YH, Zhou HH, Guo B (2020). Ecological water rights of the Bosten Lake wetlands in Xinjiang, China. Wetlands, 40, 2597-2607.
DOI URL |
[22] | Zhang J, Bao YL, Su L, Wang LP, Lu JW, Cao JJ (2019). Response of Phragmites australis leaf traits to soil moisture in Yangguan wetland, Dunhuang. Acta Ecologica Sinica, 39, 7670-7678. |
[张剑, 包雅兰, 宿力, 王利平, 陆静雯, 曹建军 (2019). 敦煌阳关湿地芦苇叶性状对土壤水分的响应. 生态学报, 39, 7670-7678.] | |
[23] |
Zhang XF, Cui D, Yang HJ, Liu HJ (2021). The variation of carbon nitrogen and phosphorus and stoichiomery characteristics of Yili River Valley steppe soil under the effects of Conyza canadensis invasion. Polish Journal of Environmental Studies, 30, 5367-5375.
DOI URL |
[24] | Zhang XN, Li Y, He XM, Yang XD, Lü GH (2019). Responses of plant functional trait and diversity to soil water and salinity changes in desert ecosystem. Acta Ecologica Sinica, 39, 1541-1550. |
[张雪妮, 李岩, 何学敏, 杨晓东, 吕光辉 (2019). 荒漠植物功能性状及其多样性对土壤水盐变化的响应. 生态学报, 39, 1541-1550.] | |
[25] | Zhang ZK, Wu YH, Wang Q, Ji LB, Huang LJ (2020). Effects of environmental factors on stem and leaf functional traits of island plants. Guihaia, 40, 433-442. |
[张增可, 吴雅华, 王齐, 季凌波, 黄柳菁 (2020). 环境因子对海岛植物茎、叶功能性状的影响. 广西植物, 40, 433-442.] | |
[26] | Zhang ZX, Liu P, Wang Y, Liu YG, Zhang C (2020). Spatial and temporal distribution of eco-chemometric characteristics of carbon, nitrogen and phosphorus in surface sediments of different karst wetlands. Research of Soil and Water Conservation, 27(4), 23-30. |
[张紫霞, 刘鹏, 王妍, 刘云根, 张超 (2020). 不同类型岩溶湿地表层沉积物碳氮磷生态化学计量学特征时空分布. 水土保持研究, 27(4), 23-30.] | |
[27] | Zhao H, Li XG, Jin WG, Eziz M, Niu FP (2020). Hyperspectral estimation of soil salt content in lake oasis on the west bank of Bosten Lake. Acta Scientiarum Naturalium Universitatis Sunyatseni, 59(4), 56-63. |
[赵慧, 李新国, 靳万贵, 麦麦提吐尔逊·艾则孜, 牛芳鹏 (2020). 博斯腾湖西岸湖滨绿洲土壤含盐量高光谱估算. 中山大学学报(自然科学版), 59(4), 56-63.] | |
[28] | Zhao Q (2020). Study on Functional Characters and Functional Group Dynamics of Different Succession Plants in Stone Desert Area of Karst Plateau. Master degree dissertation, Guizhou University, Guiyang. |
[赵庆 (2020). 喀斯特高原石漠化区植物群落恢复过程植物功能性状与功能群动态研究. 硕士学位论文, 贵州大学, 贵阳.] | |
[29] | Zhu RQ, Liu ML, Li G, Kang HM, Yang T, Wang ZY (2020). Responses of leaf functional traits of Reaumuria soongorica in two different desert habitats. Joumal of Northwest Forestry University, 35(5), 29-34. |
[朱瑞清, 刘美玲, 李刚, 康红梅, 杨涛, 王治业 (2020). 2种水分生境下红砂叶片功能性状的响应及适应机制. 西北林学院学报, 35(5), 29-34.] |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[8] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[9] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[10] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[11] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[12] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[13] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[14] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[15] | 胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响[J]. 植物生态学报, 2023, 47(6): 847-855. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19