植物生态学报 ›› 2024, Vol. 48 ›› Issue (2): 242-253.DOI: 10.17521/cjpe.2022.0430 cstr: 32100.14.cjpe.2022.0430
所属专题: 生态化学计量
吴君梅1, 曾泉鑫1, 梅孔灿1, 林惠瑛1, 谢欢1, 刘苑苑1, 徐建国2, 陈岳民1,*()
收稿日期:
2022-10-31
接受日期:
2023-04-06
出版日期:
2024-02-28
发布日期:
2023-04-20
通讯作者:
陈岳民
基金资助:
WU Jun-Mei1, ZENG Quan-Xin1, MEI Kong-Can1, LIN Hui-Ying1, XIE Huan1, LIU Yuan-Yuan1, XU Jian-Guo2, CHEN Yue-Min1,*()
Received:
2022-10-31
Accepted:
2023-04-06
Online:
2024-02-28
Published:
2023-04-20
Contact:
CHEN Yue-Min
Supported by:
摘要:
探究土壤胞外酶活性及其化学计量对了解土壤微生物的养分限制情况和土壤养分的循环过程具有重要意义。尽管亚热带森林土壤风化严重, 土壤磷有效性低, 但是亚热带森林生态系统具有较高水平的植被生产力。在气候变化(如变暖和CO2浓度增加)背景下, 预测植被生产力将会提高, 这将增加凋落叶的输入。然而, 未来不同质量凋落叶输入增加对土壤酶活性及其化学计量的影响是否受土壤磷有效性的调控仍不清楚。该研究以马尾松(Pinus massoniana)林土壤为研究对象, 探究了3种不同质量(如叶碳氮比或碳磷比存在差异)的凋落叶(马尾松、醉香含笑(俗名: 火力楠, Michelia macclurei)和枫香树(Liquidambar formosana))和磷添加对土壤理化性质、胞外酶活性的影响。同时, 结合土壤酶化学计量、矢量长度(VL)和矢量角度(VA)分析, 解析了土壤微生物的养分限制状况及其关键调控因素。结果表明: 与对照相比, 凋落叶添加增加了土壤β-N-乙酰氨基葡糖苷酶和酸性磷酸酶(ACP)活性。通过酶化学计量分析发现, 凋落叶添加显著提高VL和VA, 且影响强度表现为醉香含笑>枫香>马尾松, 表明凋落叶添加会改变土壤微生物的养分限制状况, 且影响程度与凋落叶的质量有关。与凋落叶单独添加相比, 凋落叶与磷共同添加显著增加土壤有效磷含量, 降低ACP活性和VA, 表明磷添加有助于缓解凋落叶输入下土壤微生物的磷限制。冗余分析表明, 土壤碳氮比、可溶性有机碳和有效磷含量是影响土壤酶活性和酶化学计量的主要因素。综上所述, 该研究发现亚热带森林土壤微生物养分限制对凋落叶输入的响应不仅受凋落叶质量的影响, 同时还受土壤磷有效性的调控。这一结果可以为未来气候变化下亚热带森林土壤微生物养分获取策略对不同凋落叶输入和磷添加的响应提供理论参考, 同时也将有助于提高对亚热带低磷森林生态系统土壤生物地球化学循环过程的理解。
吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应. 植物生态学报, 2024, 48(2): 242-253. DOI: 10.17521/cjpe.2022.0430
WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest. Chinese Journal of Plant Ecology, 2024, 48(2): 242-253. DOI: 10.17521/cjpe.2022.0430
全碳(C)含量 Total carbon (C) content (g·kg-1) | 全氮(N)含量 Total nitrogen (N) content (g·kg-1) | C:N | 全磷(P)含量 Total phosphorus (P) content (g·kg-1) | C:P | |
---|---|---|---|---|---|
马尾松 Pinus massoniana | 458.37 ± 9.84ab | 12.07 ± 0.41a | 37.98 ± 0.53c | 2.03 ± 0.01a | 225.58 ± 5.24c |
醉香含笑 Michelia macclurei | 475.18 ± 1.89a | 10.38 ± 0.25b | 45.81 ± 1.23b | 0.96 ± 0.02c | 496.57 ± 13.45a |
枫香树 Liquidambar formosana | 454.87 ± 1.01b | 9.44 ± 0.14c | 48.17 ± 0.78a | 1.41 ± 0.01b | 323.38 ± 2.36b |
p | 0.011 | <0.001 | <0.001 | <0.001 | <0.001 |
表1 供试凋落叶的基本性质(平均值±标准差, n = 3)
Table 1 Basic properties of three kinds of litters (mean ± SD, n = 3)
全碳(C)含量 Total carbon (C) content (g·kg-1) | 全氮(N)含量 Total nitrogen (N) content (g·kg-1) | C:N | 全磷(P)含量 Total phosphorus (P) content (g·kg-1) | C:P | |
---|---|---|---|---|---|
马尾松 Pinus massoniana | 458.37 ± 9.84ab | 12.07 ± 0.41a | 37.98 ± 0.53c | 2.03 ± 0.01a | 225.58 ± 5.24c |
醉香含笑 Michelia macclurei | 475.18 ± 1.89a | 10.38 ± 0.25b | 45.81 ± 1.23b | 0.96 ± 0.02c | 496.57 ± 13.45a |
枫香树 Liquidambar formosana | 454.87 ± 1.01b | 9.44 ± 0.14c | 48.17 ± 0.78a | 1.41 ± 0.01b | 323.38 ± 2.36b |
p | 0.011 | <0.001 | <0.001 | <0.001 | <0.001 |
图1 亚热带森林凋落叶和磷添加对土壤理化性质的影响(平均值±标准差, n = 3)。CK, 对照; LF, 枫香凋落叶添加; LF+PA, 枫香凋落叶和磷共同添加; MM, 醉香含笑凋落叶添加; MM+PA, 醉香含笑凋落叶和磷共同添加; PA, 磷添加; PM, 马尾松凋落叶添加; PM+PA, 马尾松凋落叶和磷共同添加。L、PA和L×PA分别表示在双因素方差分析下凋落叶添加和磷添加的主效应以及两者的交互作用。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 1 Effects of litter and phosphorus (P) addition on soil physical and chemical properties in a subtropical forest (mean ± SD, n = 3). CK, control; LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; PA, P addition; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. L, PA and L×PA respectively represent the main effects of litter addition and P addition and their interactions respectively following a two-way ANOVA. AP, available P; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; TC, total carbon; TN, total nitrogen; TP, total P. Different lowercase letters meant significant difference at 0.05 level among treatments.
图2 亚热带森林凋落叶和磷添加对土壤微生物生物量养分含量的影响(平均值±标准差, n = 3)。CK, 对照; LF, 枫香凋落叶添加; LF+PA, 枫香凋落叶和磷共同添加; MM, 醉香含笑凋落叶添加; MM+PA, 醉香含笑凋落叶和磷共同添加; PA, 磷添加; PM, 马尾松凋落叶添加; PM+PA, 马尾松凋落叶和磷共同添加。L、PA和L×PA分别表示在双因素方差分析下凋落叶添加和磷添加的主效应以及两者的交互作用。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Effects of litter and phosphorus (P) addition on soil microbial biomass nutrient content in a subtropical forest (mean ± SD, n = 3). CK, control; LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; PA, P addition; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. L, PA and L×PA represent the main effects of litter addition and P addition, and their interactions, respectively following a two-way ANOVA. MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass P. Different lowercase letters meant significant difference at 0.05 level among treatments.
图3 亚热带森林凋落叶和磷添加对土壤酶活性的影响(平均值±标准差, n = 3)。CK, 对照; LF, 枫香凋落叶添加; LF+PA, 枫香凋落叶和磷共同添加; MM, 醉香含笑凋落叶添加; MM+PA, 醉香含笑凋落叶和磷共同添加; PA, 磷添加; PM, 马尾松凋落叶添加; PM+PA, 马尾松凋落叶和磷共同添加。L、PA和L×PA分别表示在双因素方差分析下凋落叶添加和磷添加的主效应以及两者的交互作用。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 3 Effects of litter and phosphorus (P) addition on soil enzymes activities in a subtropical forest (mean ± SD, n = 3). CK, control; LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; PA, P addition; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. L, PA and L×PA represent the main effects of litters addition and P addition, and their interactions, respectively following a two-way ANOVA. ACP, acid phosphatase; βG, β-glucosidase; NAG, β-N-acetyl-glucosaminidase. Different lowercase letters meant significant difference at 0.05 level among treatments.
处理 Treatment | EC:N | EC:P | EN:P | VL | VA (°) |
---|---|---|---|---|---|
CT | 0.98 ± 0.03bcd | 0.49 ± 0.01ab | 0.507 ± 0.02ab | 1.09 ± 0.03bcd | 63.11 ± 0.73bc |
PA | 0.90 ± 0.04d | 0.48 ± 0.01b | 0.533 ± 0.02a | 1.02 ± 0.04d | 61.81 ± 0.99c |
PM | 0.95 ± 0.05cd | 0.50 ± 0.02ab | 0.527 ± 0.02ab | 1.07 ± 0.05cd | 62.22 ± 0.73bc |
MM | 1.15 ± 0.11a | 0.52 ± 0.02ab | 0.457 ± 0.03c | 1.26 ± 0.10a | 65.49 ± 1.50a |
LF | 1.03 ± 0.08bc | 0.51 ± 0.04ab | 0.500 ± 0.01ab | 1.15 ± 0.09abcd | 63.46 ± 0.45b |
PM+PA | 0.97 ± 0.05bcd | 0.52 ± 0.04ab | 0.533 ± 0.01a | 1.10 ± 0.06bcd | 61.99 ± 0.65bc |
MM+PA | 1.07 ± 0.04ab | 0.54 ± 0.03a | 0.503 ± 0.01ab | 1.20 ± 0.05ab | 63.20 ± 0.43bc |
LF+PA | 1.05 ± 0.07abc | 0.52 ± 0.03ab | 0.497 ± 0.01b | 1.17 ± 0.08abc | 63.46 ± 0.58b |
Two-way ANOVA | |||||
L | <0.001 | 0.063 | <0.001 | <0.001 | <0.001 |
PA | 0.323 | 0.421 | 0.310 | 0.422 | 0.446 |
L×PA | 0.350 | 0.689 | 0.104 | 0.101 | 0.468 |
表2 亚热带森林凋落叶和磷添加对土壤酶化学计量的影响(平均值±标准差, n = 3)
Table 2 Effects of litter and phosphorus (P) addition on soil enzymatic stoichiometry in a subtropical forest (mean ± SD, n = 3)
处理 Treatment | EC:N | EC:P | EN:P | VL | VA (°) |
---|---|---|---|---|---|
CT | 0.98 ± 0.03bcd | 0.49 ± 0.01ab | 0.507 ± 0.02ab | 1.09 ± 0.03bcd | 63.11 ± 0.73bc |
PA | 0.90 ± 0.04d | 0.48 ± 0.01b | 0.533 ± 0.02a | 1.02 ± 0.04d | 61.81 ± 0.99c |
PM | 0.95 ± 0.05cd | 0.50 ± 0.02ab | 0.527 ± 0.02ab | 1.07 ± 0.05cd | 62.22 ± 0.73bc |
MM | 1.15 ± 0.11a | 0.52 ± 0.02ab | 0.457 ± 0.03c | 1.26 ± 0.10a | 65.49 ± 1.50a |
LF | 1.03 ± 0.08bc | 0.51 ± 0.04ab | 0.500 ± 0.01ab | 1.15 ± 0.09abcd | 63.46 ± 0.45b |
PM+PA | 0.97 ± 0.05bcd | 0.52 ± 0.04ab | 0.533 ± 0.01a | 1.10 ± 0.06bcd | 61.99 ± 0.65bc |
MM+PA | 1.07 ± 0.04ab | 0.54 ± 0.03a | 0.503 ± 0.01ab | 1.20 ± 0.05ab | 63.20 ± 0.43bc |
LF+PA | 1.05 ± 0.07abc | 0.52 ± 0.03ab | 0.497 ± 0.01b | 1.17 ± 0.08abc | 63.46 ± 0.58b |
Two-way ANOVA | |||||
L | <0.001 | 0.063 | <0.001 | <0.001 | <0.001 |
PA | 0.323 | 0.421 | 0.310 | 0.422 | 0.446 |
L×PA | 0.350 | 0.689 | 0.104 | 0.101 | 0.468 |
图4 亚热带森林土壤酶矢量长度(A)和矢量角度(B)对凋落叶和磷添加的响应比(平均值±标准差, n = 3)。LF, 枫香凋落叶添加; LF+PA, 枫香凋落叶和磷共同添加; MM, 醉香含笑凋落叶添加; MM+PA, 醉香含笑凋落叶和磷共同添加; PA, 磷添加; PM, 马尾松凋落叶添加; PM+PA, 马尾松凋落叶和磷共同添加。L、PA和L×PA分别表示在双因素方差分析下凋落叶添加和磷添加的主效应以及两者的交互作用。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 4 Response ratio of soil enzyme vector length (A) and vector angle (B) to litter and phosphorus (P) addition in a subtropical forest (mean ± SD, n = 3). LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; PA, P addition; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. L, PA and L×PA represent the main effects of litter addition and P addition, and their interactions, respectively following a two-way ANOVA. VA, vector angle; VL, vector length. Different lowercase letters mean significant difference at 0.05 level among treatments.
图5 凋落叶单独添加(A)和凋落叶与磷共同添加(B)下土壤酶活性和酶化学计量的冗余分析。ACP, 酸性磷酸酶活性; AP, 有效磷含量; βG, β-葡糖苷酶活性; CK, 对照; DOC, 可溶性有机碳含量; EC:N, 碳获取酶活性:氮获取酶活性; EC:P, 碳获取酶活性:磷获取酶活性; EN:P, 氮获取酶活性:磷获取酶活性; LF, 枫香凋落叶添加; LF+PA, 枫香凋落叶和磷共同添加; MM, 醉香含笑凋落叶添加; MM+PA, 醉香含笑凋落叶和磷共同添加; NAG, β-N-乙酰氨基葡糖苷酶活性; PM, 马尾松凋落叶添加; PM+PA, 马尾松凋落叶和磷共同添加; TC:TN, 总碳与总氮含量比值; TN, 总氮含量; TP, 总磷含量; VA, 矢量角度; VL, 矢量长度。
Fig. 5 Redundancy analysis of soil enzyme activity and enzymatic stoichiometry under litter (A) and phosphorus (P) addition (B). ACP, acid phosphatase activity; AP, available P content; βG, β-glucosaminidase activity; CK, control; DOC, dissolved organic carton content; EC:N, the ratio of carbon-acquiring enzyme activity to nitrogen-acquiring enzyme activity; EC:P, the ratio of carbon-acquiring enzyme activity to phosphorus-acquiring enzyme activity; EN:P, the ratio of nitrogen-acquiring enzyme activity to phosphorus-acquiring enzyme activity; LF, Liquidambar formosana litter addition; LF+PA, L. formosana litter and P addition; MM, Michelia macclurei litter addition; MM+PA, M. macclurei litter and P addition; NAG, β-N-acetyl-glucosaminidase activity; PM, Pinus massoniana litter addition; PM+PA, P. massoniana litter and P addition. TC:TN, the ratio of total carbon content to total nitrogen content; TN, total nitrogen content; TP, total P content; VA, vector angle; VL, vector length.
图6 亚热带森林土壤酶活性及其化学计量对凋落叶和磷(P)添加响应的概念图。CK, 对照; LF, 枫香; MM, 火力楠; PM, 马尾松。ACP, 酸性磷酸酶活性; AP, 有效磷含量; βG, β-葡糖苷酶活性; DOC, 可溶性有机碳含量; EC:N, 碳获取酶活性:氮获取酶活性; EC:P, 碳获取酶活性:磷获取酶活性; EN:P, 氮获取酶活性:磷获取酶活性; NAG, β-N-乙酰氨基葡糖苷酶活性; TC:TN, 总碳与总氮含量比值; VA, 矢量角度; VL, 矢量长度。梯形和CK的宽度表示相应指标数值的大小。
Fig. 6 A conceptual framework of soil enzyme activity and its stoichiometry in response to litter and phosphorus (P) addition in a subtropical forest. CK, control; LF, Liquidambar formosana; MM, Michelia macclurei; PM, Pinus massoniana. ACP, acid phosphatase activity; AP, available P content; βG, β-glucosaminidase activity; DOC, dissolved organic carton content; EC:N, the ratio of carbon-acquiring enzyme activity to nitrogen-acquiring enzyme activity; EC:P, the ratio of carbon-acquiring enzyme activity to phosphorus-acquiring enzyme activity; EN:P, the ratio of nitrogen-acquiring enzyme activity to phosphorus-acquiring enzyme activity; NAG, β-N-acetyl-glucosaminidase activity; TC:TN, the ratio of total carbon content to total nitrogen content; VA, vector angle; VL, vector length. The width of the trapezoid and CK represent the size of the corresponding index value.
[1] | Bao SD (2000). Soil and Agricultural Chemistry. 3rd ed. China Agriculture Press, Beijing. 25-108. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京. 25-108.] | |
[2] | Bending GD, Turner MK, Jones JE (2002). Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology & Biochemistry, 34, 1073-1082. |
[3] | Brookes PC, Landman A, Pruden G, Jenkinson DS (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842. |
[4] | Brookes PC, Powlson DS, Jenkinson DS (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry, 14, 319-329. |
[5] | Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234. |
[6] | Chen X, Hao BH, Jing X, He JS, Ma WH, Zhu B (2019). Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems. Plant and Soil, 444, 21-37. |
[7] | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
[8] | Cleveland CC, Neff JC, Townsend AR, Hood TE (2004). Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems, 7, 275-285. |
[9] | Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020). Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology & Biochemistry, 147, 107814. DOI: 10.1016/j.soilbio.2020.107814. |
[10] | DeForest JL, Moorhead DL (2020). Effects of elevated pH and phosphorus fertilizer on soil C, N and P enzyme stoichiometry in an acidic mixed mesophytic deciduous forest. Soil Biology & Biochemistry, 150, 107996. |
[11] | Fan YX, Zhong XJ, Lin F, Liu C, Yang LM, Wang MH, Chen GS, Chen Y, Yang YS (2019). Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 337, 246-255. |
[12] | Hong HB, Lin CF, Peng JQ, Chen YM, Wei CC, Yang YS (2017). Effects of phosphorus addition on fine root decomposition and enzyme activity of Castanopsis carlesii and Cunninghamia lanceolata in subtropical forest. Acta Ecologica Sinica, 37, 136-146. |
[洪慧滨, 林成芳, 彭建勤, 陈岳民, 魏翠翠, 杨玉盛 (2017). 磷添加对中亚热带米槠和杉木细根分解及其酶活性的影响. 生态学报, 37, 136-146.] | |
[13] | Hu S, Firestone M, Chapin III FS (1999). Soil microbial feedbacks to atmospheric CO2enrichment. Trends in Ecology & Evolution, 14, 433-437. |
[14] | Jing X, Chen X, Fang JY, Ji CJ, Shen HH, Zheng CY, Zhu B (2020). Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biology & Biochemistry, 141, 107657. DOI: 10.1016/j.soilbio.2019.107657. |
[15] | Jones DL, Willett VB (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38, 991-999. |
[16] |
Leff JW, Wieder WR, Taylor PG, Townsend AR, Nemergut DR, Stuart Grandy A, Cleveland CC (2012). Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Global Change Biology, 18, 2969-2979.
DOI PMID |
[17] | Lin HY, Zhou JC, Zeng QX, Sun J, Xie H, Liu YY, Mei KC, Wu Y, Yuan XC, Wu JM, Su XC, Cheng DL, Chen YM (2022). Soil enzyme stoichiometry revealed the changes of soil microbial carbon and phosphorus limitation along an elevational gradient in a Pinus taiwanensis forest of Wuyi Mountains, Southeast China. Chinese Journal of Applied Ecology, 33, 33-41. |
[林惠瑛, 周嘉聪, 曾泉鑫, 孙俊, 谢欢, 刘苑苑, 梅孔灿, 吴玥, 元晓春, 吴君梅, 苏先楚, 程栋梁, 陈岳民 (2022). 土壤酶计量揭示了武夷山黄山松林土壤微生物沿海拔梯度的碳磷限制变化. 应用生态学报, 33, 33-41.]
DOI |
|
[18] | Liu Q, Liu R, Zhang LS, Chen FS, Guo CL, Wang FC (2022). Effects of fertilization and light on soil enzyme activity and its stoichiometric ratio of Liquidambar formosana seedling. Acta Agriculturae Universitatis Jiangxiensis, 44, 127-138. |
[刘俏, 刘仁, 张绿水, 陈伏生, 郭春兰, 王方超 (2022). 施肥与光照对枫香栽培土壤酶活性及其化学计量比的影响. 江西农业大学学报, 44, 127-138.] | |
[19] | Liu R, Chen FS, Fang XM, Wan SZ, Bu WS, Wang HM, Li JJ (2020). Effects of litter addition and removal on soil hydrolytic enzyme activities and ecoenzymatic stoichiometry in Chinese fir plantation. Acta Ecologica Sinica, 40, 5739-5750. |
[刘仁, 陈伏生, 方向民, 万松泽, 卜文圣, 王辉民, 李建军 (2020). 凋落物添加和移除对杉木人工林土壤水解酶活性及其化学计量比的影响. 生态学报, 40, 5739-5750.] | |
[20] | Lu YM, Xu EL, Wu DM, Lu SX, Liu XF, Guo JF (2021). Effects of double addition or removal of litter on soil hydrolases activities and their stoichiometry in Castanopsis carlesii forest. Journal of Soil and Water Conservation, 35, 313-320. |
[陆宇明, 许恩兰, 吴东梅, 卢胜旭, 刘小飞, 郭剑芬 (2021). 凋落物双倍添加和移除对米槠林土壤水解酶活性及其化学计量比的影响. 水土保持学报, 35, 313-320.] | |
[21] | Luan LL, Liu EY, Gu X, Sun JX (2020). Effects of litter manipulation and nitrogen addition on soil ecoenzymatic stoichiometry in a mixed pine and oak forest. Acta Ecologica Sinica, 40, 9220-9233. |
[栾历历, 刘恩媛, 顾新, 孙建新 (2020). 凋落物处理和氮添加对松栎混交林土壤生态酶化学计量的影响. 生态学报, 40, 9220-9233.] | |
[22] |
Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI PMID |
[23] | Mei KC, Chen YM, Fan YX, Zhou JC, Zhang QF, Cheng L, Zeng QX, Xu JG, Yuan XC, Cui JY, Liu YY (2022). Effects of litters and phosphorus addition on soil carbon priming effect in Pinus massoniana forest. Acta Pedologica Sinica, 59, 1089-1099. |
[梅孔灿, 陈岳民, 范跃新, 周嘉聪, 张秋芳, 程蕾, 曾泉鑫, 徐建国, 元晓春, 崔琚琰, 刘苑苑 (2022). 凋落叶和磷添加对马尾松林土壤碳激发效应的影响. 土壤学报, 59, 1089-1099.] | |
[24] | Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN (2013). Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Frontiers in Microbiology, 4, 223. DOI: 10.3389/fmicb.2013.00223. |
[25] | Murphy J, Riley JP (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. |
[26] | Pan AF (2018). The occurrence and control strategy of the pests on Liquidambar formosana in Fujian. Wuyi Science Journal, 34, 100-109. |
[潘爱芳 (2018). 福建枫香害虫发生现状与防治对策. 武夷科学, 34, 100-109.] | |
[27] | Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013). The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593-622. |
[28] | Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013. |
[29] | Qiao H, Mo XQ, Luo YH, Liu XY, Hu YJ, Chen XB, Su YR (2019). Patterns of soil ecoenzymatic stoichiometry and its influencing factors during stand development in Camellia oleifera plantations. Acta Ecologica Sinica, 39, 1887-1896. |
[乔航, 莫小勤, 罗艳华, 刘兴元, 胡亚军, 陈香碧, 苏以荣 (2019). 不同林龄油茶人工林土壤酶化学计量及其影响因素. 生态学报, 39, 1887-1896.] | |
[30] |
Ru JY, Zhou YQ, Hui DF, Zheng MM, Wan SQ (2018). Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland. Global Change Biology, 24, 1001-1011.
DOI PMID |
[31] | Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315. |
[32] |
Sheldrake M, Rosenstock NP, Revillini D, Olsson PA, Mangan S, Sayer EJ, Wallander H, Turner BL, Tanner EVJ (2017). Arbuscular mycorrhizal fungal community composition is altered by long-term litter removal but not litter addition in a lowland tropical forest. New Phytologist, 214, 455-467.
DOI PMID |
[33] | Sinsabaugh RL, Follstad Shah JJ (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343. |
[34] | Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798. |
[35] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI PMID |
[36] |
Talbot JM, Treseder KK (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93, 345-354.
PMID |
[37] | Tang ML, Wei L, Zhu ZK, Li H, Zhou P, Ge TD, Wu JS, Wang GJ (2018). Responses of organic carbon mineralization and priming effect to phosphorus addition in paddy soils. Chinese Journal of Applied Ecology, 29, 857-864. |
[唐美玲, 魏亮, 祝贞科, 李欢, 周萍, 葛体达, 吴金水, 王光军 (2018). 稻田土壤有机碳矿化及其激发效应对磷添加的响应. 应用生态学报, 29, 857-864.]
DOI |
|
[38] |
Tian T, Fan WY, Lu W, Xiao X (2015). An object-based information extraction technology for dominant tree species group types. Chinese Journal of Applied Ecology, 26, 1665-1672.
PMID |
[田甜, 范文义, 卢伟, 肖湘 (2015). 面向对象的优势树种类型信息提取技术. 应用生态学报, 26, 1665-1672.] | |
[39] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707. |
[40] | Wang L, Liang YF, Yang JQ, Zhang BB, Wang T, Shi XZ, Hu HW, Huang ZQ (2020). Characteristics of soil nitrogen retention and related functional microorganism in soils of main afforestation species in subtropical region. Scientia Silvae Sinicae, 56(8), 27-37. |
[王磊, 梁艺凡, 杨军钱, 张冰冰, 王涛, 施秀珍, 胡行伟, 黄志群 (2020). 亚热带主要造林树种土壤氮保留及相关功能的微生物特征. 林业科学, 56(8), 27-37.] | |
[41] | Wang N, Huang M, Gu FX, Yan HM, Wang SQ, He HL, Wang ZS, Sun XY, Xu WT, Yang FT, Chu GW (2019). Diagnosing phosphorus limitation in subtropical forests in China under climate warming. Sustainability, 11, 2202. DOI: 10.3390/su11082202. |
[42] | Wang QK, Wang SL, Liu YX (2008). Responses to N and P fertilization in a young Eucalyptus dunnii plantation: microbial properties, enzyme activities and dissolved organic matter. Applied Soil Ecology, 40, 484-490. |
[43] | Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947. |
[王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] | |
[44] | Wang XX, Cui YX, Wang YH, Duan CJ, Niu YN, Sun RX, Shen YF, Guo XT, Fang LC (2022). Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems. Journal of Soils and Sediments, 22, 536-546. |
[45] | Wei CC, Liu XF, Lin CF, Li XF, Li Y, Zheng YX (2018). Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China. Chinese Journal of Plant Ecology, 42, 692-702. |
[魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄 (2018). 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42, 692-702.]
DOI |
|
[46] |
Yu GR, Chen Z, Piao SL, Peng CH, Ciais P, Wang QF, Li XR, Zhu XJ (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 111, 4910-4915.
DOI PMID |
[47] | Zeng QX, Zhang QF, Lin KM, Zhou JC, Yuan XC, Mei KC, Wu Y, Cui JY, Xu JG, Chen YM (2021). Enzyme stoichiometry evidence revealed that five years nitrogen addition exacerbated the carbon and phosphorus limitation of soil microorganisms in a Phyllostachys pubescens forest. Chinese Journal of Applied Ecology, 32, 521-528. |
[曾泉鑫, 张秋芳, 林开淼, 周嘉聪, 元晓春, 梅孔灿, 吴玥, 崔琚琰, 徐建国, 陈岳民 (2021). 酶化学计量揭示5年氮添加加剧毛竹林土壤微生物碳磷限制. 应用生态学报, 32, 521-528.]
DOI |
|
[48] | Zhang BB, Wan XH, Yang JQ, Wang T, Huang ZQ (2021). Effects of litters different in quality on soil microbial community structure in Cunninghamia lanceolata plantation. Acta Pedologica Sinica, 58, 1040-1049. |
[张冰冰, 万晓华, 杨军钱, 王涛, 黄志群 (2021). 不同凋落物质量对杉木人工林土壤微生物群落结构的影响. 土壤学报, 58, 1040-1049.] | |
[49] |
Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93.
DOI |
[50] | Zhang W, Xu YD, Gao DX, Wang X, Liu WC, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2019). Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biology & Biochemistry, 134, 1-14. |
[51] | Zhang XX, Yang LM, Chen Z, Li YQ, Lin YY, Zheng XZ, Chu HY, Yang YS (2018). Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas. Acta Ecologica Sinica, 38, 5828-5836. |
[张星星, 杨柳明, 陈忠, 李一清, 林燕语, 郑宪志, 楚海燕, 杨玉盛 (2018). 中亚热带不同母质和森林类型土壤生态酶化学计量特征. 生态学报, 38, 5828-5836.] | |
[52] | Zhu Z, Ge T, Luo Y, Liu S, Xu X, Tong C, Shibistova O, Guggenberger G, Wu J (2018). Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biology & Biochemistry, 121, 67-76. |
[1] | 冉佳鑫 张宇辉 王云 杨智杰 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响[J]. 植物生态学报, 2024, 48(9): 0-0. |
[2] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[3] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[4] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[5] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[6] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[7] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[8] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[9] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[10] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[11] | 宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444-455. |
[12] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[13] | 胡苑柳, 陈国茵, 陈静文, 孙连伟, 李健陵, 窦宁, 张德强, 邓琦. 模拟酸沉降对南亚热带季风常绿阔叶林土壤微生物群落结构的长期影响[J]. 植物生态学报, 2021, 45(3): 298-308. |
[14] | 袁锋, 王艳艳, 李茂瑾, 江传阳, 刘贺娜, 李坤玲, 洪滔, 吴承祯, 陈灿. 不同海岸距离上木麻黄凋落叶金属元素含量及归还量动态特征[J]. 植物生态学报, 2020, 44(8): 819-827. |
[15] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19