植物生态学报 ›› 2024, Vol. 48 ›› Issue (10): 1291-1301.DOI: 10.17521/cjpe.2024.0040 cstr: 32100.14.cjpe.2024.0040
张学渊, 高翠萍, 汤靖磊, 朱毅, 田磊, 韩国栋, 任海燕*()(
)
收稿日期:
2024-02-04
接受日期:
2024-06-18
出版日期:
2024-10-20
发布日期:
2024-12-03
通讯作者:
任海燕
基金资助:
ZHANG Xue-Yuan, GAO Cui-Ping, TANG Jing-Lei, ZHU Yi, TIAN Lei, HAN Guo-Dong, REN Hai-Yan*()(
)
Received:
2024-02-04
Accepted:
2024-06-18
Online:
2024-10-20
Published:
2024-12-03
Contact:
REN Hai-Yan
Supported by:
摘要:
土壤CH4和CO2通量是全球碳循环的重要组成部分, 是缓解和适应气候变化的关键因素, 然而在不同冻融阶段土壤CH4和CO2通量如何响应气候变暖和氮沉降仍未清楚解析。该研究以内蒙古荒漠草原开展了18年的增温和氮沉降野外控制实验为基础, 使用SF-3500多通道全自动土壤气体通量测量控制系统, 在2021年5月至2022年4月不间断地监测了荒漠草原生态系统土壤CH4和CO2通量的变化。研究结果表明: (1)增温、增温+氮添加显著提高了土壤温度, 氮添加对土壤温度则没有显著影响; 各处理均未改变土壤含水量。(2)荒漠草原土壤CH4全年累积吸收通量为344-471 mg C·m-2。增温延长了秋季冻结期, 并对该时期土壤CH4累积吸收通量的影响有增加趋势, 氮添加和增温+氮添加则趋向于降低土壤CH4吸收通量; 冬季冻结期占全年土壤CH4吸收通量的比例为8%, 处理间差异不显著; 春季解冻期对全年土壤CH4吸收通量的贡献为14%, 氮添加、增温+氮添加显著降低了该时期土壤CH4吸收通量。(3)荒漠草原CO2全年累积排放通量为101-106 g C·m-2; 秋季冻结期排放通量占全年土壤CO2排放通量的比例为5%, 氮添加、增温、增温+氮添加均趋于增加土壤CO2累积排放通量; 土壤CO2通量在冬季冻结期有从排放转变为吸收的趋势; 增温、增温+氮添加在春季解冻期显著增加了土壤CO2排放通量。(4)土壤CH4吸收通量和CO2排放通量与土壤温度和含水量呈显著正相关关系。研究结果揭示荒漠草原土壤CH4通量表现为“碳汇”, 特别在非生长季的土壤CH4累积吸收通量对全年的贡献达到41%; 土壤CO2全年累积通量以排放为主, 非生长季占全年土壤CO2通量的比例为9%。未来应同时考虑生长季和非生长季的碳通量格局, 以更精准地评估全球变化对陆地生态系统碳固持的影响。
张学渊, 高翠萍, 汤靖磊, 朱毅, 田磊, 韩国栋, 任海燕. 内蒙古荒漠草原土壤CH4和CO2通量在不同冻融 阶段对增温和氮添加的响应. 植物生态学报, 2024, 48(10): 1291-1301. DOI: 10.17521/cjpe.2024.0040
ZHANG Xue-Yuan, GAO Cui-Ping, TANG Jing-Lei, ZHU Yi, TIAN Lei, HAN Guo-Dong, REN Hai-Yan. Responses of soil CH4 and CO2 flux to warming and nitrogen addition during freeze-thaw cycles in a desert steppe of Nei Mongol, China. Chinese Journal of Plant Ecology, 2024, 48(10): 1291-1301. DOI: 10.17521/cjpe.2024.0040
图1 土壤不同冻融阶段对应的平均气温、降水量、土壤温度和含水量。A, 平均气温和降水量。B, 0-10 cm深度的土壤温度。C, 0-10 cm深度的土壤含水量。D, 不同处理下的土壤冻融阶段。黑色垂直线区分生长季(Gs)和非生长季节(Ngs), 灰色垂直虚线之间的区域是冬季冻结期(Sfw), 黑色垂直虚线之间的区域是秋季冻结期(Saf); Sst, 春季解冻期。CK, 对照; N, 氮添加; W, 增温; W+N, 增温+氮添加。Freezing, 秋-冬季冻结; Frozen, 冬季冻结; Thawed, 融化; Thawing, 冬-春季解冻。
Fig. 1 Mean air temperature, precipitation, soil temperature and moisture corresponding to different freeze-thaw stages of soil. A, Mean air temperature and precipitation. B, Soil temperature at 0-10 cm depth. C, Soil moisture at 0-10 cm depth. D, Soil freeze-thaw stage of different treatments. The black vertical line distinguishes between growing season (Gs) and non-growing season (Ngs), and the area between the black vertical dotted lines are the frozen winter (Sfw), area between the gray vertical dotted lines are the autumn freezing (Saf); Sst, spring thaw. CK, control; N, nitrogen addition; W, warming; W+N, warming + nitrogen addition. Freezing, autumn-winter freezing; Frozen, frozen in winter; Thawed, growing season thawed; Thawing, winter-spring thawing.
图2 不同处理下土壤CH4全年和季节性累积吸收通量以及季节性吸收通量对全年通量的相对贡献。A, 土壤CH4累积吸收通量(平均值±标准误)。B, 土壤CH4季节性吸收通量对年吸收通量的相对贡献。CK, 对照; N, 氮添加; W, 增温; W+N, 增温+氮添加。Gs、Saf、Sfw和Sst分别指生长季、秋季冻结期、冬季冻结期和春季解冻期。不同小写字母表示同一时期不同处理间差异显著(p < 0.05)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 2 Annual and seasonal cumulative CH4 uptake and the relative contribution of seasonal CH4 uptake to annual CH4 uptake under different treatments. A, Cumulative CH4 uptake (mean ± SE). B, Relative contribution of seasonal CH4 uptake to annual CH4 uptake under different treatments. CK, control; N, nitrogen addition; W, warming; W+N, warming + nitrogen addition. GS, Saf, Sfw, and Sst refer to growing season, autumn freeze, frozen winter, and spring thaw, respectively, which are defined according to the different soil freeze-thaw stages of the control. Different lowercase letters indicate a significant difference among treatments (p < 0.05). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
处理 Treatment | CH4吸收通量 CH4 uptake flux | CO2排放通量 CO2 emission flux | |||
---|---|---|---|---|---|
F | p | F | p | ||
增温 W | 0.034 | 0.858 | 0.006 | 0.943 | |
氮添加 N | 0.571 | 0.472 | 0.003 | 0.960 | |
时期 P | 175.339 | <0.000 1 | 105.211 | <0.000 1 | |
增温×氮添加 W × N | 0.481 | 0.508 | 0.021 | 0.889 | |
增温×时期 W × P | 0.010 | 0.921 | 2.433 | 0.119 | |
氮添加×时期 N × P | 6.676 | 0.010 | 1.994 | 0.158 | |
增温×氮添加×时期 W × N × P | 0.882 | 0.348 | 0.128 | 0.720 |
表1 增温、氮添加、不同时期及其交互作用对土壤CH4和CO2通量影响的线性混合效应模型分析
Table 1 Linear mixed effects modeling analysis for the effects of warming (W), nitrogen addition (N), period (P), and their interactions on soil CH4 uptake flux and CO2 emission flux
处理 Treatment | CH4吸收通量 CH4 uptake flux | CO2排放通量 CO2 emission flux | |||
---|---|---|---|---|---|
F | p | F | p | ||
增温 W | 0.034 | 0.858 | 0.006 | 0.943 | |
氮添加 N | 0.571 | 0.472 | 0.003 | 0.960 | |
时期 P | 175.339 | <0.000 1 | 105.211 | <0.000 1 | |
增温×氮添加 W × N | 0.481 | 0.508 | 0.021 | 0.889 | |
增温×时期 W × P | 0.010 | 0.921 | 2.433 | 0.119 | |
氮添加×时期 N × P | 6.676 | 0.010 | 1.994 | 0.158 | |
增温×氮添加×时期 W × N × P | 0.882 | 0.348 | 0.128 | 0.720 |
图3 不同处理下土壤CO2全年和季节性累积通量以及季节性通量对全年通量的相对贡献。A, 土壤CO2累积通量(平均值±标准误)。B, 土壤CO2季节性通量对全年通量的相对贡献。CK, 对照; N, 氮添加; W, 增温; W+N, 增温+氮添加。Gs、Saf、Sfw和Sst分别指生长季、秋季冻结期、冬季冻结期和春季解冻期。不同小写字母表示处理间差异显著(p < 0.05)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 3 Annual and seasonal cumulative CO2 flux and the relative contribution of seasonal CO2 flux to annual CO2 flux under different treatments. A, Cumulative CO2 flux (mean ± SE). B, Relative contribution of seasonal CO2 flux to annual CO2 flux under different treatments. CK, control; N, nitrogen addition; W, warming; W+N, warming + nitrogen addition. GS, Saf, Sfw, and Sst refer to growing season, autumn freeze, frozen winter, and spring thaw, respectively, which are defined according to the different soil freeze-thaw stages of the control. Different lowercase letters indicate a significant difference among treatments (p < 0.05). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
处理 Treatment | 对照 Control | 氮添加 Nitrogen addition | 增温 Warming | 增温+氮添加 Warming + nitrogen addition |
---|---|---|---|---|
ST (℃) | 6.24 ± 2.02b | 6.28 ± 2.03b | 7.89 ± 2.03a | 7.91 ± 2.05a |
SM (%) | 5.33 ± 0.57a | 5.93 ± 0.72a | 7.27 ± 0.72a | 6.38 ± 0.72a |
表2 增温和氮添加对土壤理化性质的影响(平均值±标准误)
Table 2 Effects of warming and nitrogen addition on soil physical and chemical properties (mean ± SE)
处理 Treatment | 对照 Control | 氮添加 Nitrogen addition | 增温 Warming | 增温+氮添加 Warming + nitrogen addition |
---|---|---|---|---|
ST (℃) | 6.24 ± 2.02b | 6.28 ± 2.03b | 7.89 ± 2.03a | 7.91 ± 2.05a |
SM (%) | 5.33 ± 0.57a | 5.93 ± 0.72a | 7.27 ± 0.72a | 6.38 ± 0.72a |
图4 土壤CH4和CO2通量与土壤温度和含水量的线性拟合。实线为线性回归拟合线, 灰色阴影表示95%置信区间。CK, 对照; N, 氮添加; W, 增温; W+N, 增温+氮添加。***, p < 0.001。
Fig. 4 Linear fitting of annual CH4 uptake flux with soil temperature and soil moisture. Solid lines are fitted by linear regression, and the gray shadow represents the 95% confidence interval. CK, control; N, nitrogen addition; W, warming; W+N, warming + nitrogen addition. ***, p < 0.001.
[1] | Andresen LC, Moser G, Seibert R, Guillet C, Grünhage L, Donath TW, Otte A, Hemfler M, Achilles F, Wegner CE, Liesack W, Müller C (2015). Permanent managed grassland at future climate change: Is there a connection between GHG emission and composition of plant and microbial communities? Procedia Environmental Sciences, 29, 156-157. |
[2] | Bai W, Xi JY, Wang GX (2019). Effects of short-term warming and nitrogen addition on CO2 emission during growing season in an alpine swamp meadow ecosystem of Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 38, 927-936. |
[ 白炜, 奚晶阳, 王根绪 (2019). 短期增温与施氮对青藏高原高寒沼泽草甸生态系统CO2排放的影响. 生态学杂志, 38, 927-936.] | |
[3] |
Bodelier PLE, Laanbroek HJ (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology, 47, 265-277.
DOI PMID |
[4] |
Carey JC, Tang J, Templer PH, Kroeger KD, Crowther TW, Burton AJ, Dukes JS, Emmett B, Frey SD, Heskel MA, Jiang L, Machmuller MB, Mohan J, Panetta AM, Reich PB, et al. (2016). Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America, 113, 13797-13802.
DOI PMID |
[5] | Czepiel PM, Crill PM, Harriss RC (1995). Environmental factors influencing the variability of methane oxidation in temperate zone soils. Journal of Geophysical Research: Atmospheres, 100, 9359-9364. |
[6] | Deng ZH, Gao JJ, Zhou YL, Gao JQ (2015). Effect of N deposition on CO2 emission during freezing-thawing incubation period of peat soil. Chinese Journal of Soil Science, 46, 962-966. |
[ 邓昭衡, 高居娟, 周雨露, 高俊琴 (2015). 氮沉降对冻融培养期泥炭土二氧化碳排放的影响. 土壤通报, 46, 962-966.] | |
[7] |
Dijkstra FA, Morgan JA, Follett RF, Lecain DR (2013). Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Global Change Biology, 19, 1816-1826.
DOI PMID |
[8] | Domínguez MT, Holthof E, Smith AR, Koller E, Emmett BA (2017). Contrasting response of summer soil respiration and enzyme activities to long-term warming and drought in a wet shrubland (NE Wales, UK). Applied Soil Ecology, 110, 151-155. |
[9] | Du YG, Ke X, Li JM, Wang YY, Cao GM, Guo XW, Chen KL (2021). Nitrogen deposition increases global grassland N2O emission rates steeply: a meta-analysis. Catena, 199, 105105. DOI: 10.1016/j.catena.2020.105105. |
[10] | Gao DC, Liu ZP, Bai E (2021). Effects of in situ freeze-thaw cycles on winter soil respiration in mid-temperate plantation forests. Science of the Total Environment, 793, 14857. DOI: 10.1016/j.scitotenv.2021.148567. |
[11] | Guo DL, Yang MX, Wang HJ (2011). Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau. Environmental Earth Sciences, 63, 97-107. |
[12] | Herrmann A, Witter E (2002). Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology & Biochemistry, 34, 1495-1505. |
[13] | Hu WP, Zhang C, Hu CS, Dong WX, Wang YY (2022). Effects of long-term warming and nitrogen fertilization on soil respiration and temperature sensitivity in the North China Plain. Chinese Journal of Eco-Agriculture, 30, 761-768. |
[ 胡文沛, 张闯, 胡春胜, 董文旭, 王玉英 (2022). 长期增温和施氮对华北平原农田土壤呼吸及其温度敏感性的影响. 中国生态农业学报(中英文), 30, 761-768.] | |
[14] | Huang JX, Xiong DC, Liu XF, Yang ZJ, Xie JS, Yang YS (2017). Effects of warming on soil organic carbon mineralization: a review. Acta Ecologica Sinica, 37, 12-24. |
[ 黄锦学, 熊德成, 刘小飞, 杨智杰, 谢锦升, 杨玉盛 (2017). 增温对土壤有机碳矿化的影响研究综述. 生态学报, 37, 12-24.] | |
[15] | IPCC(Intergovernmental Panel on Climate Change) (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. 35-115. |
[16] | Li YL, Hong M, Bai WM, Han GD, Wang HM, Zhou M (2015). The responses of soil respiration to water and nitrogen in Stipa breviflora steppe. Acta Ecologica Sinica, 35, 1727-1733. |
[ 李寅龙, 红梅, 白文明, 韩国栋, 王海明, 周萌 (2015). 水、氮控制对短花针茅草原土壤呼吸的影响. 生态学报, 35, 1727-1733.] | |
[17] | Liu S, Wang CK, Xu F (2010). Soil effluxes of carbon dioxide, methane and nitrous oxide during non-growing season for four temperate forests in Northeastern China. Acta Ecologica Sinica, 30, 4075-4084. |
[ 刘实, 王传宽, 许飞 (2010). 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量. 生态学报, 30, 4075-4084.] | |
[18] | Liu S, Yu GR, Jun A, Michiaki S, Zhang LM, Zhao FH, Hu ZM, Li SG (2009). The thawing-freezing processes and soil moisture distribution of the steppe in central Mongolian Plateau. Acta Pedologica Sinica, 46(1), 46-51. |
[ 刘帅, 于贵瑞, 浅沼顺, 杉田伦明, 张雷明, 赵风华, 胡中民, 李胜功 (2009). 蒙古高原中部草地土壤冻融过程及土壤含水量分布. 土壤学报, 46(1), 46-51.] | |
[19] |
Liu T, Zhang YX, Xu ZZ, Zhou GS, Hou YH, Lin L (2012). Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 36, 1043-1053.
DOI |
[ 刘涛, 张永贤, 许振柱, 周广胜, 侯彦会, 林琳 (2012). 短期增温和增加降水对内蒙古荒漠草原土壤呼吸的影响. 植物生态学报, 36, 1043-1053.]
DOI |
|
[20] | Mu CC, Abbott BW, Norris AJ, Mu M, Fan CY, Chen X, Jia L, Yang RM, Zhang TJ, Wang K, Peng XQ, Wu QB, Guggenberger G, Wu XD (2020). The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews, 211, 103433. DOI: 10.1016/j.earscirev.2020.103433. |
[21] | Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G, Crummer KG, Johnston C, Krapek J, Pegoraro E, Salmon VG, Webb EE (2015). Permafrost thaw and soil moisture driving CO2, and CH4release from upland tundra. Journal of Geophysical Research: Biogeosciences, 120, 525-537. |
[22] | Pan ZL, Wang ZW, Han GD, Wu Q, Liu F, Wang RZ (2016). Responses of methane fluxes on warming and nitrogen addition in Stipa breviflora desert steppe. Ecology and Environmental Sciences, 25, 209-216. |
[ 潘占磊, 王忠武, 韩国栋, 武倩, 刘芳, 王瑞珍 (2016). 短花针茅荒漠草原甲烷通量对增温和施氮的响应. 生态环境学报, 25, 209-216.]
DOI |
|
[23] | Peng YF, Wang GQ, Li F, Yang GB, Fang K, Liu L, Qin SQ, Zhang DY, Zhou GY, Fang HJ, Liu XJ, Liu CY, Yang YH (2019). Unimodal response of soil methane consumption to increasing nitrogen additions. Environmental Science & Technology, 53, 4150-4160. |
[24] | Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications, 4, 617-625. |
[25] |
Qi Q, Zhao JS, Tian RM, Zeng YF, Xie CY, Gao Q, Dai TJ, Wang H, He JS, Konstantinidis KT, Yang YF, Zhou JZ, Guo X,(2022). Microbially enhanced methane uptake under warming enlarges ecosystem carbon sink in a Tibetan alpine grassland. Global Change Biology, 28, 6906-6920.
DOI PMID |
[26] | Rafalska A, Walkiewicz A, Osborne B, Klumpp K, Bieganowski A (2023). Variation in methane uptake by grassland soils in the context of climate change—A review of effects and mechanisms. Science of the Total Environment, 871, 162167. DOI: 10.1016/j.scitotenv.2023.162127. |
[27] | Ren HY, Han GD, Li MH, Gao CP, Jiang L (2021). Ethylene-regulated leaf lifespan explains divergent responses of plant productivity to warming among three hydrologically different growing seasons. Global Change Biology, 27, 4169-4180. |
[28] | Shan D, Han GD, Zhao ML, Wang Z, Han X, Gao FG (2009). The effects of experimental warming and nitrogen addition on soil respiration in desert steppe. Journal of Arid Land Resources and Environment, 23(9), 106-112. |
[ 珊丹, 韩国栋, 赵萌莉, 王珍, 韩雄, 高福光 (2009). 控制性增温和施氮对荒漠草原土壤呼吸的影响. 干旱区资源与环境, 23(9), 106-112.] | |
[29] | Shukla PN, Pandey KD, Mishra VK (2013). Environmental determinants of soil methane oxidation and methanotrophs. Critical Reviews in Environmental Science and Technology, 43, 1945-2011. |
[30] | Steudler PA, Melillo JM, Bowden RD, Castro MS, Lugo AE (1991). The effects of natural and human disturbances on soil nitrogen dynamics and trace gas fluxes in a Puerto Rican wet forest. Biotropica, 23, 356-363. |
[31] | Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18, 336-348. |
[32] | Tian Q, Yang F, Wang ZH, Zhang QY (2024). Response of soil CO2 emission in terrestrial ecosystems to the simulated warming and its influencing factor. Acta Ecologica Sinica, 44, 1928-1939. |
[ 田茜, 杨芳, 王召欢, 张庆印 (2024). 陆地生态系统土壤CO2排放对模拟增温的响应特征及影响因素. 生态学报, 44, 1928-1939.] | |
[33] | Wang JF, Wu QB, Yuan ZQ, Kang H (2020). Soil respiration of alpine meadow is controlled by freeze-thaw processes of active layer in the permafrost region of the Qinghai-Tibet Plateau. The Cryosphere, 14, 2835-2848. |
[34] | Wang PY, Wang JS, Elberling B, Yang L, Chen WN, Song L, Yan YJ, Wang S, Pan JX, He YL, Niu SL (2022). Increased annual methane uptake driven by warmer winters in an alpine meadow. Global Change Biology, 28, 3246-3259. |
[35] |
Wang X, Liu LL, Piao SL, Janssens IA, Tang JW, Liu WX, Chi YG, Wang J, Xu S (2014). Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Global Change Biology, 20, 3229-3237.
DOI PMID |
[36] | Wu X, Wang FF, Li T, Fu BJ, Lv YH, Liu GH (2020). Nitrogen additions increase N2O emissions but reduce soil respiration and CH4 uptake during freeze-thaw cycles in an alpine meadow. Geoderma, 363, 114157. DOI: 10.1016/j.geoderma.2019.114157. |
[37] | Xia N, Du EZ, Wu XH, Tang Y, Wang Y, de Vries W (2020). Effects of nitrogen addition on soil methane uptake in global forest biomes. Environmental Pollution, 264, 114751. DOI: 10.1016/j.envpol.2020.114751. |
[38] | Xu BX, Hu YG, Zhang ZS, Chen YL, Zhang P, Li G (2014). Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region. Chinese Journal of Plant Ecology, 38, 809-820. |
[ 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚 (2014). 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 38, 809-820.]
DOI |
|
[39] | Xu H, Wang FF, Li T, Wu X (2020). A review of freezing-thawing cycle effects on key processes of soil nitrogen cycling and the underlying mechanisms. Acta Ecologica Sinica, 40, 3168-3182. |
[ 徐欢, 王芳芳, 李婷, 伍星 (2020). 冻融交替对土壤氮素循环关键过程的影响与机制研究进展. 生态学报, 40, 3168-3182.] | |
[40] |
Yan GY, Xing YJ, Xu LJ, Wang JY, Meng W, Wang QG, Yu JH, Zhang Z, Wang ZD, Jiang SL, Liu BQ, Han SJ (2016). Nitrogen deposition may enhance soil carbon storage via change of soil respiration dynamic during a spring freeze-thaw cycle period. Scientific Reports, 6, 29134. DOI: 10.1038/srep29134.
PMID |
[41] | Yang QX, Tian DS, Zeng H, Niu SL (2017). Main factors driving changes in soil respiration under altering precipitation regimes and the controlling processes. Chinese Journal of Plant Ecology, 41, 1239-1250. |
[ 杨青霄, 田大栓, 曾辉, 牛书丽 (2017). 降水格局改变背景下土壤呼吸变化的主要影响因素及其调控过程. 植物生态学报, 41, 1239-1250.]
DOI |
|
[42] | Yang WZ, Jiao Y, Yang MD, Wen HY, Liu LJ (2021). Absorbed carbon dioxide in saline soil from Northwest China. Catena, 207, 105677. DOI: 10.1016/j.catena.2021.105677. |
[43] | Zhang JX, Hong JT, Wei D, Wang XD (2022). Severe freezing increases soil respiration during the thawing period: a meta-analysis. European Journal of Soil Science, 73, e13161. DOI: 10.1111/ejss.13161. |
[44] |
Zhang L, Yuan F, Bai J, Duan H, Gu X, Hou L, Huang Y, Yang M, He JS, Zhang Z, Yu L, Song C, Lipson DA, Zona D, Oechel W, Janssens IA, Xu X (2020). Phosphorus alleviation of nitrogen-suppressed methane sink in global grasslands. Ecology Letters, 23, 821-830.
DOI PMID |
[45] | Zhang LX, Yang J, Gao QZ, Su LD, Gan ZZB, Hou H (2013). Effects of simulated warming and precipitation enhancement on soil respiration of Stipa krylovii steppe. Chinese Journal of Agrometeorology, 34, 629-635. |
[ 张立欣, 杨劼, 高清竹, 苏力德, 干珠扎布, 侯虹 (2013). 模拟增温增雨对克氏针茅草原土壤呼吸的影响. 中国农业气象, 34, 629-635.] | |
[46] | Zhang TA, Chen HYH, Ruan HH (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825. |
[47] |
Zheng Y, Yang W, Sun X, Wang SP, Rui YC, Luo CY, Guo LD (2012). Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau. Applied Microbiology and Biotechnology, 93, 2193-2203.
DOI PMID |
[48] | Zhou P, Liu GB, Xue S (2009). Review of soil respiration and the impact factors on grassland ecosystem. Acta Prataculturae Sinica, 18, 184-193. |
[ 周萍, 刘国彬, 薛萐 (2009). 草地生态系统土壤呼吸及其影响因素研究进展. 草业学报, 18, 184-193.] | |
[49] |
Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC, Miller CE, Dinardo SJ, Dengel S, Sweeney C, Karion A, Chang RYW, Henderson JM, Murphy PC, Goodrich JP, Moreaux V, et al. (2016). Cold season emissions dominate the Arctic tundra methane budget. Proceedings of the National Academy of Sciences of the United States of America, 113, 40-45.
DOI PMID |
[1] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[2] | 俞庆水, 倪晓凤, 吉成均, 朱江玲, 唐志尧, 方精云. 10年氮磷添加对海南尖峰岭热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(6): 690-700. |
[3] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[4] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[5] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[6] | 马斌 佘维维 秦欢 宋春阳 袁新月 苗春 刘靓 冯薇 秦树高 张宇清. 氮素和水分添加对黑沙蒿(Artemisia ordosica)种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
[7] | 赵常提 夏青霖 田地 陈冰瑞 朱瑞德 刘宵含 俞果 吉成均. 长期氮添加对温带落叶阔叶林优势植物叶片次生代谢产物的影响[J]. 植物生态学报, 2024, 48(12): 1576-1588. |
[8] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
[9] | 陆啸飞, 覃张芬, 王斌, 旷远文. 氮添加对南亚热带常绿阔叶林林下植物-土壤植硅体碳的影响[J]. 植物生态学报, 2024, 48(10): 1302-1311. |
[10] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[11] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[12] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[13] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[14] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[15] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19