植物生态学报 ›› 2024, Vol. 48 ›› Issue (10): 1302-1311.DOI: 10.17521/cjpe.2023.0184 cstr: 32100.14.cjpe.2023.0184
陆啸飞1,2, 覃张芬2,3, 王斌1, 旷远文2,3,*()
收稿日期:
2023-06-28
接受日期:
2023-12-21
出版日期:
2024-10-20
发布日期:
2024-01-22
通讯作者:
旷远文
基金资助:
LU Xiao-Fei1,2, QIN Zhang-Fen2,3, WANG Bin1, KUANG Yuan-Wen2,3,*()
Received:
2023-06-28
Accepted:
2023-12-21
Online:
2024-10-20
Published:
2024-01-22
Contact:
KUANG Yuan-Wen
Supported by:
摘要: 植物在吸收土壤溶液中的硅并形成植硅体的过程中会包裹少量有机碳, 被称为植硅体碳。近年来, 植硅体碳固存被认为是陆地生态系统碳固存的重要机制之一。大气氮沉降速率上升对森林碳动态产生了深刻影响, 但鲜有研究关注外源氮输入对森林植硅体碳固存的影响。该研究依托广东石门台常绿阔叶林的林冠和林下野外氮添加实验平台, 探究外源氮输入增加对南亚热带常绿阔叶林优势灌木、草本植物叶片和土壤植硅体碳含量的影响和调控机制。结果发现, 林下高浓度氮添加显著提高了林下植物叶片和凋落物植硅体碳含量, 外源氮输入增加刺激了植物对硅的吸收, 增强了植硅体固存有机碳的能力。然而, 仅林冠高氮添加显著提高了表层土壤中植硅体碳含量, 林下氮添加无显著影响, 这可能是由于林下氮添加抑制了凋落物分解, 减缓了凋落物中植硅体释放。结构方程模型结果表明, 氮添加导致的磷限制加剧、土壤酸化和凋落物分解速率变化是影响林下植物和土壤植硅体碳含量的主要因子。大气氮沉降速率增加能提升南亚热带常绿阔叶林林下植物和土壤的植硅体碳固存潜力。
陆啸飞, 覃张芬, 王斌, 旷远文. 氮添加对南亚热带常绿阔叶林林下植物-土壤植硅体碳的影响. 植物生态学报, 2024, 48(10): 1302-1311. DOI: 10.17521/cjpe.2023.0184
LU Xiao-Fei, QIN Zhang-Fen, WANG Bin, KUANG Yuan-Wen. Effects of nitrogen addition on phytolith-occluded carbon of understory plant-soil system in a subtropical evergreen broadleaf forest in south China. Chinese Journal of Plant Ecology, 2024, 48(10): 1302-1311. DOI: 10.17521/cjpe.2023.0184
图1 不同氮添加处理对南亚热带常绿阔叶林林下植物叶片植硅体碳含量的影响(平均值±标准差)。不同小写字母表示不同处理间差异显著(p < 0.05)。M, 氮添加方式; R, 氮添加水平。CK, 对照; CN, 林冠氮添加; UN, 林下氮添加; 25与50表示氮添加水平为25、50 kg·hm-2·a-1。
Fig. 1 Effects of nitrogen (N) addition on the contents of phytolith-occluded carbon (PhytOC) in the leaves of understory species in a subtropical evergreen broadleaf forest in south China (mean ± SD). Different lowercase letters indicate significant differences among treatments (p < 0.05). M, mode of N addition; R, level of N addition. CK, control; CN, canopy N addition; UN, understory N addition; 25 and 50 represent the N addition amount of 25 and 50 kg·hm-2·a-1, respectively.
处理 Treatment | 碳含量 Carbon (C) content (mg·g-1) | 氮含量 Nitrogen (N) content (mg·g-1) | 磷含量 Phosphorus (P) content (mg·g-1) | 碳氮比 C:N | 氮磷比 N:P |
---|---|---|---|---|---|
CK | 447.08 ± 20.95a | 19.96 ± 0.50b | 1.04 ± 0.04a | 22.76 ± 0.65a | 19.72 ± 0.91b |
CN25 | 448.93 ± 20.92a | 22.95 ± 1.27a | 1.02 ± 0.03a | 20.48 ± 1.02b | 22.98 ± 1.49a |
CN50 | 446.13 ± 30.45a | 21.31 ± 0.49a | 0.95 ± 0.04a | 21.20 ± 0.54b | 23.30 ± 1.23a |
UN25 | 449.41 ± 30.53a | 20.71 ± 0.74b | 1.01 ± 0.04a | 22.19 ± 0.88a | 20.98 ± 1.09ab |
UN50 | 450.02 ± 40.67a | 21.07 ± 0.52ab | 0.99 ± 0.04a | 21.64 ± 0.56ab | 21.87 ± 0.82ab |
表1 不同施氮处理对南亚热带常绿阔叶林林下植物叶片化学元素含量的影响(平均值±标准差)
Table 1 Effects of different nitrogen (N) addition on the leaves of understory plants in a subtropical evergreen broadleaf forest in south China (mean ± SD)
处理 Treatment | 碳含量 Carbon (C) content (mg·g-1) | 氮含量 Nitrogen (N) content (mg·g-1) | 磷含量 Phosphorus (P) content (mg·g-1) | 碳氮比 C:N | 氮磷比 N:P |
---|---|---|---|---|---|
CK | 447.08 ± 20.95a | 19.96 ± 0.50b | 1.04 ± 0.04a | 22.76 ± 0.65a | 19.72 ± 0.91b |
CN25 | 448.93 ± 20.92a | 22.95 ± 1.27a | 1.02 ± 0.03a | 20.48 ± 1.02b | 22.98 ± 1.49a |
CN50 | 446.13 ± 30.45a | 21.31 ± 0.49a | 0.95 ± 0.04a | 21.20 ± 0.54b | 23.30 ± 1.23a |
UN25 | 449.41 ± 30.53a | 20.71 ± 0.74b | 1.01 ± 0.04a | 22.19 ± 0.88a | 20.98 ± 1.09ab |
UN50 | 450.02 ± 40.67a | 21.07 ± 0.52ab | 0.99 ± 0.04a | 21.64 ± 0.56ab | 21.87 ± 0.82ab |
图2 不同氮添加处理对南亚热带常绿阔叶林凋落物植硅体碳含量的影响(平均值±标准差)。不同小写字母表示处理间差异显著(p < 0.05)。M, 氮添加方式; R, 氮添加水平。CK, 对照; CN, 林冠氮添加; UN, 林下氮添加; 25与50表示氮添加水平为25和50 kg·hm-2·a-1。
Fig. 2 Effects of nitrogen (N) addition on the contents of phytolith-occluded carbon (PhytOC) in the litter in a subtropical evergreen broadleaf forest in south China (mean ± SD). Different lowercase letters indicate significant differences among treatments (p < 0.05). M, mode of N addition; R, level of N addition. CK, control; CN, canopy N addition; UN, understory N addition; 25 and 50 represent the N addition amount as 25 and 50 kg·hm-2·a-1, respectively.
处理 Treatment | 碳含量 Carbon (C) content (mg·g-1) | 氮含量 N content (mg·g-1) | 磷含量 Phosphorus (P) content (mg·g-1) | 碳氮比 C:N | 氮磷比 N:P |
---|---|---|---|---|---|
CK | 481.5 ± 16.3a | 15.0 ± 0.81b | 0.95 ± 0.05ab | 32.2 ± 1.92a | 15.79 ± 0.61b |
CN25 | 463.0 ± 10.4a | 16.1 ± 0.42b | 0.99 ± 0.04ab | 28.7 ± 0.93ab | 16.27 ± 0.71ab |
CN50 | 469.8 ± 13.6a | 17.6 ± 1.01a | 1.07 ± 0.03a | 26.9 ± 2.21b | 16.44 ± 0.43ab |
UN25 | 466.9 ± 17.3a | 15.6 ± 0.63b | 1.01 ± 0.05ab | 30.6 ± 1.41a | 15.44 ± 0.49b |
UN50 | 480.0 ± 11.2a | 15.7 ± 1.02b | 0.94 ± 0.06b | 29.7 ± 2.54a | 16.70 ± 0.50a |
表2 不同施氮处理对凋落叶中化学元素含量的影响(平均值±标准差)
Table 2 Effects of different nitrogen (N) addition on the chemical elements content of litter (mean ± SD)
处理 Treatment | 碳含量 Carbon (C) content (mg·g-1) | 氮含量 N content (mg·g-1) | 磷含量 Phosphorus (P) content (mg·g-1) | 碳氮比 C:N | 氮磷比 N:P |
---|---|---|---|---|---|
CK | 481.5 ± 16.3a | 15.0 ± 0.81b | 0.95 ± 0.05ab | 32.2 ± 1.92a | 15.79 ± 0.61b |
CN25 | 463.0 ± 10.4a | 16.1 ± 0.42b | 0.99 ± 0.04ab | 28.7 ± 0.93ab | 16.27 ± 0.71ab |
CN50 | 469.8 ± 13.6a | 17.6 ± 1.01a | 1.07 ± 0.03a | 26.9 ± 2.21b | 16.44 ± 0.43ab |
UN25 | 466.9 ± 17.3a | 15.6 ± 0.63b | 1.01 ± 0.05ab | 30.6 ± 1.41a | 15.44 ± 0.49b |
UN50 | 480.0 ± 11.2a | 15.7 ± 1.02b | 0.94 ± 0.06b | 29.7 ± 2.54a | 16.70 ± 0.50a |
图3 不同氮添加处理对南亚热带常绿阔叶林土壤植硅体碳含量的影响(平均值±标准差)。不同小写字母表示不同处理间差异显著(p < 0.05)。M, 氮添加方式; R, 氮添加水平。CK, 对照; CN, 林冠氮添加; UN, 林下氮添加; 25与50表示氮添加水平为25、50 kg·hm-2·a-1。
Fig. 3 Effects of nitrogen (N) addition on the contents of phytolith-occluded carbon (PhytOC) in the soil in a subtropical evergreen broadleaf forest in south China (mean ± SD). Different lowercase letters indicate significant differences among treatments (p < 0.05). M, mode of N addition; R, level of N addition. CK, control; CN, canopy N addition; UN, understory N addition; 25 and 50 represent N addition amount as 25 and 50 kg·hm-2·a-1, respectively.
处理 Treatment | 有机碳含量 SOC content (mg·g-1) | 植硅体碳/总有机碳 PhytOC/SOC (mg·g-1) | 总氮含量 N content (mg·g-1) | 可利用性氮含量 AN content (mg·kg-1) | pH |
---|---|---|---|---|---|
CK | 41.52 ± 1.13ab | 2.11 ± 0.21b | 2.65 ± 0.21a | 12.69 ± 0.81b | 3.81 ± 0.06a |
CN25 | 38.03 ± 3.14b | 2.20 ± 0.18ab | 2.44 ± 0.35a | 14.01 ± 1.65ab | 3.76 ± 0.07ab |
CN50 | 39.24 ± 0.88b | 2.84 ± 0.34a | 2.80 ± 0.32a | 15.59 ± 2.27ab | 3.64 ± 0.04ab |
UN25 | 43.31 ± 2.01ab | 1.92 ± 0.32b | 2.67 ± 0.30a | 16.04 ± 2.87ab | 3.56 ± 0.04b |
UN50 | 44.13 ± 1.52a | 2.51 ± 0.27a | 2.91 ± 0.28a | 17.19 ± 2.40a | 3.54 ± 0.05b |
表3 不同施氮处理对土壤基本理化性质的影响(平均值±标准差)
Table 3 Effects of different nitrogen (N) addition on the soil properties (mean ± SD)
处理 Treatment | 有机碳含量 SOC content (mg·g-1) | 植硅体碳/总有机碳 PhytOC/SOC (mg·g-1) | 总氮含量 N content (mg·g-1) | 可利用性氮含量 AN content (mg·kg-1) | pH |
---|---|---|---|---|---|
CK | 41.52 ± 1.13ab | 2.11 ± 0.21b | 2.65 ± 0.21a | 12.69 ± 0.81b | 3.81 ± 0.06a |
CN25 | 38.03 ± 3.14b | 2.20 ± 0.18ab | 2.44 ± 0.35a | 14.01 ± 1.65ab | 3.76 ± 0.07ab |
CN50 | 39.24 ± 0.88b | 2.84 ± 0.34a | 2.80 ± 0.32a | 15.59 ± 2.27ab | 3.64 ± 0.04ab |
UN25 | 43.31 ± 2.01ab | 1.92 ± 0.32b | 2.67 ± 0.30a | 16.04 ± 2.87ab | 3.56 ± 0.04b |
UN50 | 44.13 ± 1.52a | 2.51 ± 0.27a | 2.91 ± 0.28a | 17.19 ± 2.40a | 3.54 ± 0.05b |
图4 氮添加对植物(A、B)和土壤植硅体(C、D)碳含量影响的结构方程模型。CFI, 比较拟合指数; df, 自由度; RMSEA, 近似均方根误差。蓝色和红色箭头分别表示显著正相关和负相关(p < 0.05)。与箭头相邻的数字是标准化路径系数。箭头粗细与参数大小成正比。
Fig. 4 Structural equation model (SEM) for biological silicon feedback to nitrogen addition (N) and standardized total effects on foliar (A, B) and soil phytolith-occluded carbon (C, D) contents. Goodness-of-fit statistics for SEM are shown below (CFI, comparative fit index; df, degrees of freedom; RMSEA, root mean squared error of approximation). Blue and red arrows indicate significantly positive and negative relationships (p < 0.05), respectively. The numbers adjacent to arrows are standardized path coefficients. Arrow thickness is proportional to parameter size. P, phosphorus; PhytOC, phytolith-occluded carbon.
[1] | Alexandre A, Meunier JD, Colin F, Koud JM (1997). Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica et Cosmochimica Acta, 61, 677-682. |
[2] | Bonan GB (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449. |
[3] | Cama J, Ganor J (2006). The effects of organic acids on the dissolution of silicate minerals: a case study of oxalate catalysis of kaolinite dissolution. Geochimica et Cosmochimica Acta, 70, 2191-2209. |
[4] | Carey JC, Fulweiler RW (2013). Nitrogen enrichment increases net silica accumulation in a temperate salt marsh. Limnology and Oceanography, 58, 99-111. |
[5] | Carey JC, Fulweiler RW (2016). Human appropriation of biogenic silicon—The increasing role of agriculture. Functional Ecology, 30, 1331-1339. |
[6] | Cornelis JT, Delvaux B (2016). Soil processes drive the biological silicon feedback loop. Functional Ecology, 30, 1298-1310. |
[7] |
de Tombeur F, Laliberté E, Lambers H, Faucon MP, Zemunik G, Turner BL, Cornelis JT, Mahy G (2021). A shift from phenol to silica-based leaf defences during long-term soil and ecosystem development. Ecology Letters, 24, 984-995.
DOI PMID |
[8] |
de Tombeur F, Turner BL, Laliberté E, Lambers H, Mahy G, Faucon MP, Zemunik G, Cornelis JT (2020). Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science, 369, 1245-1248.
DOI PMID |
[9] | Farmer VC, Delbos E, Miller JD (2005). The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma, 127, 71-79. |
[10] |
Feng H, Guo J, Peng C, Kneeshaw D, Roberge G, Pan C, Ma X, Zhou D, Wang W (2023). Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: a global meta-analysis. Global Change Biology, 29, 3970-3989.
DOI PMID |
[11] | Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2009). Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chemical Geology, 258, 197-206. |
[12] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[13] | Gao XP, Zou CQ, Wang LJ, Zhang FS (2005). Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition, 27, 1457-1470. |
[14] |
Gewirtzman J, Tang J, Melillo JM, Werner WJ, Kurtz AC, Fulweiler RW, Carey JC (2019). Soil warming accelerates biogeochemical silica cycling in a temperate forest. Frontiers in Plant Science, 10, 1097. DOI: 10.3389/fpls.2019.01097.
PMID |
[15] | Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL (2003). Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26, 1055-1063. |
[16] | Haynes RJ (2014). A contemporary overview of silicon availability in agricultural soils. Journal of Plant Nutrition and Soil Science, 177, 831-844. |
[17] | He SQ, Huang ZT, Wu JS, Yang J, Jiang PK (2016). Evolution pattern of phytolith-occluded carbon in typical forest-soil ecosystems in tropics and subtropics, China. Chinese Journal of Applied Ecology, 27, 697-704. |
[ 何珊琼, 黄张婷, 吴家森, 杨杰, 姜培坤 (2016). 热带、亚热带典型森林-土壤系统植硅体碳演变规律. 应用生态学报, 27, 697-704.]
DOI |
|
[18] | Kostic L, Nikolic N, Bosnic D, Samardzic J, Nikolic M (2017). Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant and Soil, 419, 447-455. |
[19] | Li Z, Song Z, Li B (2013). The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China. Applied Geochemistry, 37, 117-124. |
[20] | Liu GS (1996). Soil Physical and Chemical Analysis & Description of Soil Profiles. Standards Press of China, Beijing. |
[ 刘光崧 (1996). 土壤理化分析与剖面描述. 中国标准出版社, 北京.] | |
[21] | Liu SJ, Behm JE, Wan SQ, Yan JH, Ye Q, Zhang W, Yang XD, Fu SL (2021). Effects of canopy nitrogen addition on soil fauna and litter decomposition rate in a temperate forest and a subtropical forest. Geoderma, 382, 114703. DOI: 10.1016/j.geoderma.2020.114703. |
[22] | Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462. |
[23] | Lu X, Qin Z, Lambers H, Tang S, Kaal J, Hou E, Kuang Y (2022). Nitrogen addition increases aboveground silicon and phytolith concentrations in understory plants of a tropical forest. Plant and Soil, 477, 25-39. |
[24] | Lü HY, Jia JW, Wang WM, W YJ, Liu KB (2002). On the meaning of phytolith and its classification in Gramineae. Acta Micropalaeontologica Sinica, 19, 389-396. |
[ 吕厚远, 贾继伟, 王伟铭, 王永吉, 廖淦标 (2002). “植硅体”含义和禾本科植硅体的分类. 微体古生物学报, 19, 389-396.] | |
[25] | Mao Q, Lu X, Mo H, Gundersen P, Mo J (2018). Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of the Total Environment, 610-611, 555-562. |
[26] | Meunier JD, Sandhya K, Prakash NB, Borschneck D, Dussouillez P (2018). pH as a proxy for estimating plant-available Si? A case study in rice fields in Karnataka (South India). Plant and Soil, 432, 143-155. |
[27] | Parr J, Sullivan L, Chen B, Ye G, Zheng W (2010). Carbon bio-sequestration within the phytoliths of economic bamboo species. Global Change Biology, 16, 2661-2667. |
[28] | Parr JF, Sullivan LA (2005). Soil carbon sequestration in phytoliths. Soil Biology & Biochemistry, 37, 117-124. |
[29] |
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 10.1038/ncomms3934.
PMID |
[30] | Quigley KM, Griffith DM, Donati GL, Anderson TM (2020). Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification. Ecology, 101, e03006. DOI: 10.1002/ecy.3006. |
[31] | Reyerson PE, Alexandre A, Harutyunyan A, Corbineau R, Martinez de la Torre HA, Badeck F, Cattivelli L, Santos GM (2016). Unambiguous evidence of old soil carbon in grass biosilica particles. Biogeosciences, 13, 1269-1286. |
[32] | Song ZL, Liu HY, Si Y, Yin Y (2012). The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Global Change Biology, 18, 3647-3653. |
[33] | Song Z, Liu H, Strömberg CAE, Yang X, Zhang X (2017). Phytolith carbon sequestration in global terrestrial biomes. Science of the Total Environment, 603-604, 502-509. |
[34] | Sun Y, Wang CT, Chen HYH, Ruan HH (2020). Responses of C:N stoichiometry in plants, soil, and microorganisms to nitrogen addition. Plant and Soil, 456, 277-287. |
[35] | Tian D, Li P, Fang WJ, Xu J, Luo YK, Yan ZB, Zhu BA, Wang JA, Xu XN, Fang JY (2017). Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences, 14, 3461-3469. |
[36] | Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019. |
[37] | Tian Q, Lu P, Ma P, Zhou H, Yang M, Zhai X, Chen M, Wang H, Li W, Bai W, Lambers H, Zhang W (2020). Processes at the soil-root interface determine the different responses of nutrient limitation and metal toxicity in forbs and grasses to nitrogen enrichment. Journal of Ecology, 109, 927-938. |
[38] | Tian Y, Lu H, Wang J, Lin Y, Campbell DE, Jian S (2019). Effects of canopy and understory nitrogen addition on the structure and ec-oexergy of a subtropical forest community. Ecological Indicators, 106, 105459. DOI: 10.1016/j.ecolind.2019.105459. |
[39] |
Yan ZB, Tian D, Han WX, Tang ZY, Fang JY (2017). An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany, 120, 937-942.
DOI PMID |
[40] | Yang X, Song Z, Liu H, Bolan NS, Wang H, Li Z (2015). Plant silicon content in forests of north China and its implications for phytolith carbon sequestration. Ecological Research, 30, 347-355. |
[41] |
Ying YQ, Xiang TT, Li YF, Wu JS, Jiang PK (2015). Estimation of sequestration potential via phytolith carbon by important forest species in subtropical China. Journal of Natural Resources, 30, 133-140.
DOI |
[ 应雨骐, 项婷婷, 李永夫, 吴家森, 姜培坤 (2015). 中国亚热带重要树种植硅体碳封存潜力估测. 自然资源学报, 30, 133-140.] | |
[42] |
Zhang W, Shen WJ, Zhu SD, Wan SQ, Luo YQ, Yan JH, Wang KY, Liu L, Dai HT, Li PX, Dai KY, Zhang WX, Liu ZF, Wang FM, Kuang YW, et al. (2015). Can canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem? Scientific Reports, 5, 11245. DOI: 10.1038/srep11245.
PMID |
[43] |
Zhang XD, Song ZL, Hao Q, Wang YD, Ding F, Song AL (2019). Phytolith-occluded carbon storages in forest litter layers in Southern China: implications for evaluation of long-term forest carbon budget. Frontiers in Plant Science, 10, 581. DOI: 10.3389/fpls.2019.00581.
PMID |
[44] | Zhao YY, Song ZL, Xu XT, Liu HY, Wu XC, Li ZM, Guo FS, Pan WJ (2016). Nitrogen application increases phytolith carbon sequestration in degraded grasslands of North China. Ecological Research, 31, 117-123. |
[1] | 冉佳鑫, 张宇辉, 王云, 杨智杰, 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响[J]. 植物生态学报, 2024, 48(9): 1232-1242. |
[2] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[3] | 俞庆水, 倪晓凤, 吉成均, 朱江玲, 唐志尧, 方精云. 10年氮磷添加对海南尖峰岭热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(6): 690-700. |
[4] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[5] | 马斌 佘维维 秦欢 宋春阳 袁新月 苗春 刘靓 冯薇 秦树高 张宇清. 氮素和水分添加对黑沙蒿(Artemisia ordosica)种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
[6] | 赵常提 夏青霖 田地 陈冰瑞 朱瑞德 刘宵含 俞果 吉成均. 长期氮添加对温带落叶阔叶林优势植物叶片次生代谢产物的影响[J]. 植物生态学报, 2024, 48(12): 1576-1588. |
[7] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
[8] | 张学渊, 高翠萍, 汤靖磊, 朱毅, 田磊, 韩国栋, 任海燕. 内蒙古荒漠草原土壤CH4和CO2通量在不同冻融 阶段对增温和氮添加的响应[J]. 植物生态学报, 2024, 48(10): 1291-1301. |
[9] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[10] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[11] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[12] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[13] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[14] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[15] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19