Chin J Plant Ecol ›› 2007, Vol. 31 ›› Issue (3): 394-402.DOI: 10.17521/cjpe.2007.0048
• Articles • Previous Articles Next Articles
WANG Wei(), WANG Tao, PENG Shu-Shi, FANG Jing-Yun
Received:
2007-01-12
Accepted:
2007-03-03
Online:
2007-01-12
Published:
2007-05-30
WANG Wei, WANG Tao, PENG Shu-Shi, FANG Jing-Yun. REVIEW OF WINTER CO2 EFFLUX FROM SOILS: A KEY PROCESS OF CO2 EXCHANGE BETWEEN SOIL AND ATMOSPHERE[J]. Chin J Plant Ecol, 2007, 31(3): 394-402.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2007.0048
群落类型 Tundra community type | 平均土壤呼吸速率 Mean CO2 efflux (μmol C· m-2· s-1) | 变化范围 Seasonal range of measurements (μmol C· m-2· s-1) | 样本数 Number of samples | 冬季CO2排放量 Estimated winter CO2 efflux rates (g C·m-2) |
---|---|---|---|---|
草丛(酸性) Tussock (Acidic) | 0.68 | 0.002~1.360 | 352 | 20.95 |
河岸 (河柳) Riparian (Riverside willow) | 0.05 | 0.006~0.420 | 180 | 12.82 |
湿生莎草 Wet sedge | 0.05 | 0.020~0.830 | 150 | 12.19 |
自然河道Natural drifts | 0.11 | 0.003~0.520 | 119 | 26.37 |
石南灌丛Dry heath | 0.05 | 0.002~1.210 | 92 | 9.46 |
水道Water track | 0.16 | 0.066~0.749 | 30 | 21.65 |
草丛 (非酸性) Tussock (Nonacidic) | 0.01 | 0.007~0.082 | 20 | 2.10 |
湿生矮灌丛 Moist dwarf shrub | 0.02 | 0.019~0.088 | 20 | 0.55 |
干扰/再生植被Disturbed/Revegetated | 0.03 | 0.010~0.186 | 20 | 4.55 |
平均Average | 0.11 | 0.002~1.359 | 12.30 |
Table 1 Average net winter CO2 efflux from soils of Arctic tundra communities (Fahnestock et al., 1999)
群落类型 Tundra community type | 平均土壤呼吸速率 Mean CO2 efflux (μmol C· m-2· s-1) | 变化范围 Seasonal range of measurements (μmol C· m-2· s-1) | 样本数 Number of samples | 冬季CO2排放量 Estimated winter CO2 efflux rates (g C·m-2) |
---|---|---|---|---|
草丛(酸性) Tussock (Acidic) | 0.68 | 0.002~1.360 | 352 | 20.95 |
河岸 (河柳) Riparian (Riverside willow) | 0.05 | 0.006~0.420 | 180 | 12.82 |
湿生莎草 Wet sedge | 0.05 | 0.020~0.830 | 150 | 12.19 |
自然河道Natural drifts | 0.11 | 0.003~0.520 | 119 | 26.37 |
石南灌丛Dry heath | 0.05 | 0.002~1.210 | 92 | 9.46 |
水道Water track | 0.16 | 0.066~0.749 | 30 | 21.65 |
草丛 (非酸性) Tussock (Nonacidic) | 0.01 | 0.007~0.082 | 20 | 2.10 |
湿生矮灌丛 Moist dwarf shrub | 0.02 | 0.019~0.088 | 20 | 0.55 |
干扰/再生植被Disturbed/Revegetated | 0.03 | 0.010~0.186 | 20 | 4.55 |
平均Average | 0.11 | 0.002~1.359 | 12.30 |
地点 Location | 生态系统类型 Ecosystem types | 冬季CO2排放量 Winter CO2 efflux |
---|---|---|
美国科罗拉多州Colorado, USA | 针叶林Coniferous | 143、145 ( |
芬兰 Finland | 针叶林 Coniferous | 60~90 ( |
美国科罗拉多州 Colorado, USA | 针叶林 Coniferous | 45 ( |
美国怀俄明州Wyoming, Glees, USA | 针叶林 Coniferous | 110 ( |
加拿大 Canada | 针叶林 Coniferous | 40~55 ( |
美国科罗拉多州 Colorado, USA | 针叶林 Coniferous | 71 ( |
美国爱达荷州Idoho, USA | 针叶林 Coniferous | 132 ( |
加拿大 Canada | 落叶林 Deciduous | 89~132 ( |
美国科罗拉多州 Colorado, USA | 落叶林Deciduous | 81 ( |
美国怀俄明州Wyoming, Glees, USA | 落叶林Deciduous | 152 ( |
日本歧阜县 Gifu Prefecture, Japan | 落叶林Deciduous | 22.4 ( |
Table 2 Reported values of winter CO2 efflux (g C·m-2) from seasonally snow-covered forests
地点 Location | 生态系统类型 Ecosystem types | 冬季CO2排放量 Winter CO2 efflux |
---|---|---|
美国科罗拉多州Colorado, USA | 针叶林Coniferous | 143、145 ( |
芬兰 Finland | 针叶林 Coniferous | 60~90 ( |
美国科罗拉多州 Colorado, USA | 针叶林 Coniferous | 45 ( |
美国怀俄明州Wyoming, Glees, USA | 针叶林 Coniferous | 110 ( |
加拿大 Canada | 针叶林 Coniferous | 40~55 ( |
美国科罗拉多州 Colorado, USA | 针叶林 Coniferous | 71 ( |
美国爱达荷州Idoho, USA | 针叶林 Coniferous | 132 ( |
加拿大 Canada | 落叶林 Deciduous | 89~132 ( |
美国科罗拉多州 Colorado, USA | 落叶林Deciduous | 81 ( |
美国怀俄明州Wyoming, Glees, USA | 落叶林Deciduous | 152 ( |
日本歧阜县 Gifu Prefecture, Japan | 落叶林Deciduous | 22.4 ( |
[1] |
Adams JM, Faure H, Fauredenard L (1990). Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature, 348, 711-714.
DOI URL |
[2] |
Bertrand A, Robitaille G, Nadeau P (1994). Effects of soil freezing and drought stress on abscisic acid content of sugar maple sap and leaves. Tree Physiology, 14, 413-425.
DOI URL PMID |
[3] |
Brooks PD, Campbell DH, Tonnessen KA, Heuer K (1999). Natural variability in N export from headwater catchments: snow cover controls on ecosystem N retention. Hydrological Processes, 13, 2191-2201.
DOI URL |
[4] |
Brooks PD, McKnight D, Elder K (2004). Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Global Change Biology, 11, 231-238.
DOI URL |
[5] |
Brooks PD, Schmidt SK, Williams MW (1997). Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia, 110, 403-413.
DOI URL PMID |
[6] | Brooks PD, Williams MW, Schmidt SK (1996). Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry, 32, 93-113. |
[7] |
Brooks PD, Williams MW, Schmidt SK (1998). Inorganic N and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry, 43, 1-15.
DOI URL |
[8] |
Cerling TE (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229-240.
DOI URL |
[9] | Chapin FS, Zimov SA, Shaver GR (1996). CO2 fluctuation at high latitudes. Nature, 383, 585-586. |
[10] |
Clein JS, Schimel JP (1995). Microbial activity of tundra and taiga soils at sub-zero temperatures. Soil Biology Biochemistry, 27, 1231-1234.
DOI URL |
[11] | Collin M, Rasmuson A (1988). A comparison of gas diffusivity models for unsaturated porous media. Soil Science Society of American Journal, 53, 1559-1565. |
[12] | Conant RT, Dalla-Betta P, Klopatek CC (2004). Controls on soil respiration in semiarid soils. Soil Biology Biochemistry, 36, 945-951. |
[13] |
de Jong E, Schappert HJV (1971). Calculating of soil respiration and activity from CO2 profiles in the soil. Soil Science, 113, 328-333.
DOI URL |
[14] | Decker KL, Wang D, Waite C (2003). Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont. Soil Science Society of American Journal, 67, 1234-1242. |
[15] |
Dixon RK, Brown S, Houghton RA (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[16] |
Elberling B (2007). Annual soil CO2 effluxes in the High Arctic: the role of snow thickness and vegetation type. Soil Biology Biochemistry, 39, 646-654.
DOI URL |
[17] | Evans BM, Walker DA, Benson CS (1989). Spatial interrelationships between terrain, snow distribution and vegetation patterns at an arctic foothills site in Alaska. Holarctic Ecology, 12, 270-278. |
[18] | Fahnestock JT, Jones MH, Brooks PD (1998). Winter and early spring CO2 efflux from tundra communities of northern Alaska. Journal of Geophysical Research Atmosphere, 103, 29023-29027. |
[19] |
Fahnestock JT, Jones MH, Welker JM (1999). Wintertime CO2 efflux from arctic soils: implications for annual carbon budgets. Global Biogeochemistry Cycle, 13, 775-779.
DOI URL |
[20] |
Fisk MC, Schmidt SK, Seastedt TR (1998). Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. Ecology, 79, 2253-2266.
DOI URL |
[21] | Fitzhugh RD (2003). Soil freezing and the acid-base chemistry of soil solutions in a northern hardwood forest. Soil Science Society of American Journal, 67, 1897-1908. |
[22] |
Fung IY, Tucker CJ, Prentice KC (1987). Application of advanced very high resolution vegetation index to study atmosphere-biosphere exchange of CO2. Journal of Geophysical Research, 92, 299-301.
DOI URL |
[23] |
Giardina CP, Ryan MG (2002). Total belowground carbon allocation in a fast-growing Eucalyptus plantation estimated using a carbon balance approach. Ecosystems, 5, 487-499.
DOI URL |
[24] |
Groffman PM, Driscoll CT, Fahey TJ (2001). Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry, 56, 135-150.
DOI URL |
[25] |
Groffman PM, Hardy JP, Driscoll CD (2006). Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology, 12, 1748-1760.
DOI URL |
[26] |
Grogan P, Jonasson S (2006). Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type. Global Change Biology, 12, 1479-1495.
DOI URL |
[27] | Hirano T (2005). Seasonal and diurnal variations in topsoil and subsoil respiration under snowpack in a temperate deciduous forest. Global Biogeochemistry Cycles, doi: 10.1029/2004GB002259. |
[28] | Houghton JT, Ding Y, Griggs DJ(2001). Climate Change 2001: the Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovenmental Panel on Climate Change (IPCC ). Cambridge University Press, Cambridge, England, |
[29] |
Hubbard RM, Ryan MG, Elder K, Rhoades CC (2005). Seasonal patterns in soil surface CO2 flux under snow cover in 50 and 300 year old subalpine forest. Biogeochemistry, 73, 93-107.
DOI URL |
[30] | IPCC (Intergovernmental Panel on Climate Change)(2001). Climate Change 2001: the Scientific Basis. Technical Summary. Cambridge University Press, Cambridge, England, |
[31] |
Irvine J, Law BE (2002). Contrasting soil respiration in young and old-growth ponderosa pine forests. Global Change Biology, 8, 1183-1194.
DOI URL |
[32] |
Jones HG (1999). The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrological Processes, 13, 2135-2147.
DOI URL |
[33] |
Kennedy AD (1993). Water as a limiting factor in the antarctic terrestrial environment. Arctic Alpine Research, 25, 308-315.
DOI URL |
[34] |
Kicklighter DW (1994). Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils. Journal of Geophysical Research, 99, 1303-1315.
DOI URL |
[35] | Kurganova I, de Gerenyu VL, Rozanova L, Sapronov D, Myakshina T, Kudeyarov V (2003). Annual and seasonal CO2 fluxes from Russian southern taiga soils. Tellus, 55B, 338-344. |
[36] | Lafleur PM, Roulet NT, Bubier JL (2003). Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemistry Cycles, 17, 1036, doi: 10.1029/2002GB001983 |
[37] |
Laternser M, Schneebeli M (2003). Long-term snow climate trends of the Swiss Alps (1931~99). International Journal of Climatology, 23, 733-750.
DOI URL |
[38] |
Lehrsch GA, Sojka RE, Carter DL (1991). Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal, 55, 1401-1406.
DOI URL |
[39] |
Lipson DA, Schadt CW, Schmidt SK (2002). Changes in microbial community structure and function following snowmelt in an alpine soil. Microbial Ecology, 43, 307-314.
DOI URL PMID |
[40] |
Lipson DA, Schmidt SK, Monson RK (1999). Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology, 80, 1623-1631.
DOI URL |
[41] |
Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
DOI URL |
[42] | Marchand PJ (1987). Life in the Cold: an Introduction to Winter Ecology. University Press of New England, Hanover, NH, USA, |
[43] | Mariko S, Nishimura N, Mo W (2000). Winter CO2 flux from soil and snow surfaces in a cool-temperate deciduous forest. Japan Ecological Research, 15, 363-372. |
[44] |
Massman WJ, Sommerfeld RA, Mosier AR (1997). A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O, and CH4 through layered snowpacks. Journal of Geophysical Research Atmosphere, 102, 18851-18863.
DOI URL |
[45] | Massman WJ, Sommerfeld RA, Zeller K (1995). CO2 flux through a Wyoming seasonal snowpack: diffusional and pressure pumping effects. In: Hudnell L, Rochelle S eds. Biogeochemistry of Snow-Covered Catchments. International Association of Hydrological Sciences, Wallingford, UK, 71-79. |
[46] |
Mast MA, Wickland KP, Striegl RT (1998). Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochemistry Cycles, 12, 607-620.
DOI URL |
[47] |
Mazur P (1980). Limits to life at low temperatures and at reduced water contents and water activities. Origins of Life, 10, 137-159.
DOI URL PMID |
[48] |
McDowell NG, Marshall JD, Hooker TD (2000). Estimating CO2 flux from snowpacks at three sites in the Rocky Mountains. Tree Physiology, 20, 745-753.
DOI URL PMID |
[49] |
Measures J (1975). Role of amino acids in osmoregulation of non- halophilic bacteria. Nature, 257, 398-400.
DOI URL PMID |
[50] |
Melillo JM, Steudler PA, Aber JD (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176.
DOI URL PMID |
[51] |
Meyer ED, Sinclair NA, Nagy B (1975). Comparison of the survival and metabolic activity of psychrophilic and mesophilic yeasts subjected to freeze-thaw stress. Applied Microbiology, 29, 739-744.
URL PMID |
[52] |
Mikan C, Schimel J, Doyle A (2002). Temperature controls of microbial respiration above and below freezing in Arctic tundra soils. Soil Biology Biochemistry, 34, 1785-1795.
DOI URL |
[53] |
Monson RK (2005). Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 146, 130-147.
DOI URL PMID |
[54] | Monson RK, Burns SP, Williams MW (2006a). The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochemistry Cycles, 20, GB3030, doi: 10.1029/2005GB002684. |
[55] |
Monson RK, Turnipseed AA, Sparks JP (2002). Carbon sequestration in a high-elevation, subalpine forest. Global Change Biology, 8, 459-478.
DOI URL |
[56] |
Monson RK, Lipson DL, Burns SP (2006b). Winter forest soil respiration controlled by climate and microbial community composition. Nature, 439, 711-714.
DOI URL PMID |
[57] |
Mote PW, Hamlet AF, Clark MP (2005). Declining mountain snow pack in western North America. Bulletin of the American Meteorological Society, 86, 39-49.
DOI URL |
[58] |
Nadelhoffer KJ, Giblin AE, Shaver GR (1991). Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology, 72, 242-253.
DOI URL |
[59] |
Osterkamp TE, Romanovsky VE (1997). Freezing of the active layer on the coastal plain of the Alaskan Arcitic. Permafrost and Periglacial Process, 8, 23-33.
DOI URL |
[60] |
Oechel WC, Vourlitis G, Hastings SJ (1997). Cold season CO2 emission from arctic soils. Global Biogeochemistry Cycles, 11, 163-172.
DOI URL |
[61] |
Oechel WC, Vourlitis GL, Hastings SJ (2000). Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406, 978-981.
DOI URL PMID |
[62] |
Panikov NS, Flanagan PW, Oechel WC (2006). Microbial activity in soils frozen to below -39 ℃. Soil Biology Biochemistry, 38, 785-794.
DOI URL |
[63] | Raich JW, Schlesinger WH (1992). The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. |
[64] |
Rascher CM, Driscoll CT, Peters NE (1987). Concentration and flux of solutes from snow and forest floor during snowmelt in the west-central Adirondack region of New York. Biogeochemistry, 3, 209-224.
DOI URL |
[65] |
Ron Vaz MD, Edwards AC, Shand CA (1994). Changes in the chemistry of soil solution and acetic-acid extractable P following different types of freeze/thaw episodes. European Journal of Soil Science, 45, 353-359.
DOI URL |
[66] |
Rustad LE, Fernandez IJ (1998). Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA. Global Change Biology, 4, 597-605.
DOI URL |
[67] |
Ryan MG, Waring RH (1992). Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology, 73, 2100-2108.
DOI URL |
[68] |
Schimel JP, Clein JS (1996). Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biology Biochemistry, 28, 1061-1066.
DOI URL |
[69] |
Schimel JP, Fahnestock J, Michaelson G (2006). Cold-season production of CO2 in arctic soils: can laboratory and field estimates be reconciled through a simple modeling approach? Arctic Antarctic Alpine Research, 38, 249-256.
DOI URL |
[70] |
Schmidt SK, Lipson DA (2004). Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant and Soil, 259, 1-7.
DOI URL |
[71] |
Schimel JP, Mikan C (2005). Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biology Biochemistry, 37, 1411-1418.
DOI URL |
[72] |
Sommerfeld RA, Massman WJ, Musselman RC (1996). Diffusional flux of CO2 through snow: spatial and temporal variability among alpine-subalpine sites. Global Biogeochemical Cycles, 10, 473-482.
DOI URL |
[73] | Sommerfeld RA, Mosier AR, Musselman RC (1993). CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature, 361, 140-142. |
[74] | Stottlemyer R, Toczydlowski D (1991). Stream chemistry and hydrologic pathways during snowmelt in a small watershed adjacent Lake Superior. Biogeochemistry, 13, 177-197. |
[75] | Stottlemyer R, Toczydlowski D (1996). Precipitation, snowpack, stream-water ion chemistry, and flux in a northern Michigan watershed, 1982-1991. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2659-2672. |
[76] | Stottlemyer R, Toczydlowski D (1999). Seasonal changes in precipitation, snowpack, snowmelt, soil water and streamwater chemistry, northern Michigan. Hydrological Processes, 13, 2215-2232. |
[77] | Suni T, Berninger F, Markkanen T (2003). Interannual variability and timing of growing-season CO2 exchange in a boreal forest. Journal of Geophysical Research, 108, 2312-2318. |
[78] | Suzuki S, Ishizuka S, Kitamura K (2006). Continuous estimation of winter carbon dioxide efflux from the snow surface in a deciduous broadleaf forest. Journal of Geophysical Research, 111, D17101, doi: 10.1029/2005JD006595. |
[79] | Taylor BR, Jones HG (1990). Litter decomposition under snow cover in a balsam fir forest. Canadian Journal of Botany, 68, 112-120. |
[80] | Uchida M, Mo W, Nakatsubo T (2005). Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agricultural and Forest Meteorology, 134, 102-109. |
[81] | Wang CK, Bond-Lamberty B, Gower ST (2003). Soil surface CO2 flux in a boreal black spruce fire chronosequence. Journal of Geophysical Research, 108, 8224, doi: 101029/2001JD000861. |
[82] | Welker JM, Fahnestock JT, Jones MH (2000). Annual CO2 flux in dry and moist Arctic tundra: field responses to increases in summer temperatures and winter snow depth. Climatic Change, 44, 139-150. |
[83] | White R, Murray S, Rohweder M (2000). Pilot Analysis of Global Ecosystems (PAGE): Grassland Ecosystems. World Resources Institute, Washington, DC. |
[84] |
Wickland KP, Striegl RG, Mast MA (2001). Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998. Global Biogeochemistry Cycles, 15, 321-335.
DOI URL |
[85] |
Williams MW, Melack JM (1991). Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada. Water Resource Research, 27, 1575-1588.
DOI URL |
[86] | Winston GC, Stephens BB, Sundquist ET, Hardy JP, Davis RE 1995. Seasonal variability in gas transport through snow in a boreal forest.In: Tonnessen K, Williams MW, Trantor M eds. Biogeochemistry of Seasonally Snow-Covered Catchments. International Association of Hydrological Sciences, Wallingford, UK, 61-70. |
[87] |
Winston GC, Sundquist ET, Stephens BB (1997). Winter CO2 fluxes in a boreal forest. Journal of Geophysical Research, 102, 28795-28804
DOI URL |
[88] | Zimov SA, Davidov SP, Voropaev YV (1996). Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2. Climatic Change, 33, 111-120. |
[89] | Zimov SA, Zimova GM, Daviodov SP (1993). Winter biotic activity and production of CO2 in Siberian soils: a factor in the greenhouse effect. Journal of Geophysical Research, 98, 5017-5023. |
[1] | Wei ZHU ZHOU Ou SUN Yi-Ming Gulimire YILIHAMU WANG Ya-Fei YANG Hong-Qing Li-Ming JIA Ben-Ye XI. Dynamic niche partitioning in root water uptake of Populus tomentosa and Robinia pseudo-acacia in mixed forest [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] | FAN Fan, ZHAO Lian-Jun, MA Tian-Yi, XIONG Xin-Yu, ZHANG Yuan-Bin, SHEN Xiao-Li, LI Sheng. Community composition and structure in a 25.2 hm2 subalpine dark coniferous forest dynamics plot in Wanglang, Sichuan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1005-1017. |
[3] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[4] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[5] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[6] | WEI Long-Xin, GENG Yan, CUI Ke-Da, QIAO Xue-Tao, YUE Qing-Min, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Responses of tree growth to harvesting intensity among forest strata and growth stages in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 642-655. |
[7] | DONG Han-Jun, WANG Xing-Chang, YUAN Dan-Yang, LIU Di, LIU Yu-Long, SANG Ying, WANG Xiao-Chun. Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 722-734. |
[8] | ZHANG Min, ZHU Jiao-Jun. Effects of light and temperature on seed germination of Pinus koraiensis with different provenances [J]. Chin J Plant Ecol, 2022, 46(6): 613-623. |
[9] | QIN Jiang-Huan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Testing Janzen-Connell hypothesis based on plant-soil feedbacks in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 624-631. |
[10] | WANG Yi-Chen, DENG Zhi-Yan, ZHANG Shou-Xin, XIAO Chu-Chu, FENG Guang, LONG Wen-Xing, LIU Ji-Shi. Host tree selection by vascular epiphytes in tropical cloud forest of Hainan Island, China [J]. Chin J Plant Ecol, 2022, 46(4): 405-415. |
[11] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of microbial nutrient limiting characteristics in rhizosphere and bulk soil of coniferous forests under nitrogen deposition in southwest mountain, China [J]. Chin J Plant Ecol, 2022, 46(4): 473-483. |
[12] | LIU Yao, JIAO Ze-Bin, TAN Bo, LI Han, WANG Li-Xia, LIU Si-Ning, YOU Cheng-Ming, XU Zhen-Feng, ZHANG Li. Litter removal effects on dynamics of soil humic substances in subalpine forests of western Sichuan, China [J]. Chin J Plant Ecol, 2022, 46(3): 330-339. |
[13] | HAO Jian-Feng, ZHOU Run-Hui, YAO Xiao-Lan, YU Jing, CHEN Cong-Lin, XIANG Lin, WANG Yao-Yao, SU Tian-Cheng, QI Jin-Qiu. Effects of the second generation wild boar grazing on species diversity and soil physicochemical properties of coniferous-broad-leaved mixed forest in Jiajin Mountain, China [J]. Chin J Plant Ecol, 2022, 46(2): 197-207. |
[14] | Yang Lilin Sujing Fu Zhimin Zhang Qifu Yao. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[15] | zhou kailing Yujin Zhao Yong-Fei BAI. Study on forest plant diversity monitoring based on Sentinel-2A satellite data in northeast China [J]. Chin J Plant Ecol, 2022, 46(10): 1251-1267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn