Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (1): 86-94.DOI: 10.17521/cjpe.2017.0086
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:植物-土壤-微生物
• Research Articles • Previous Articles Next Articles
MA Zhi-Liang1,2,ZHAO Wen-Qiang1,ZHAO Chun-Zhang1,LIU Mei1,2,ZHU Pan1,LIU Qing1,*()
Online:
2018-01-20
Published:
2017-06-22
Contact:
LIU Qing ORCID:0000-0002-7046-0307
Supported by:
MA Zhi-Liang, ZHAO Wen-Qiang, ZHAO Chun-Zhang, LIU Mei, ZHU Pan, LIU Qing. Responses of soil inorganic nitrogen to increased temperature and plant removal during the growing season in a Sibiraea angustata scrub ecosystem of eastern Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2018, 42(1): 86-94.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0086
Fig. 1 Seasonal transitions of daily mean soil temperature at 5 cm below the soil surface, daily mean air temperature at 70 cm high and soil volumetric moisture at 5 cm below the soil surface under different treatments (mean ± SD) during the experiment period. P0W0, P0W1, P1W0, P1W1 are refer to the different treatments, indicated removal-plant + controlled temperature, removal-plant + increased temperature, unremoval-plant + controlled temperature, unremoval-plant + increased temperature, respectively.
Fig. 2 Seasonal dynamics of the soil nitrate contents under different treatments (mean ± SD). P0W0, P0W1, P1W0, P1W1 are refer to the different treatments, indicated removal-plant + controlled temperature, removal-plant + increased temperature, unremoval-plant + controlled temperature, unremoval-plant + increased temperature, respectively. Differences lowercase letters indicated significant differences between different treatments at the same sampling dates (p < 0.05).
因子 Factor | D | D × P | D × W | D × P × W | P | W | P × W |
---|---|---|---|---|---|---|---|
硝态氮 Nitrate | <0.001 | <0.001 | <0.001 | 0.002 | 0.002 | 0.001 | 0.086 |
铵态氮 Ammonium | <0.001 | 0.949 | 0.232 | 0.368 | 0.051 | 0.496 | 0.516 |
硝态氮/铵态氮 Nitrate/ammonium | <0.001 | <0.001 | 0.015 | 0.025 | <0.001 | 0.001 | 0.046 |
Table 1 Results of the repeated measures ANOVA showing the p values for the responses of the soil nitrate and ammonium contents and nitrate/ammonium to increased temperature (W), plant treatments (P), and sampling dates (D)
因子 Factor | D | D × P | D × W | D × P × W | P | W | P × W |
---|---|---|---|---|---|---|---|
硝态氮 Nitrate | <0.001 | <0.001 | <0.001 | 0.002 | 0.002 | 0.001 | 0.086 |
铵态氮 Ammonium | <0.001 | 0.949 | 0.232 | 0.368 | 0.051 | 0.496 | 0.516 |
硝态氮/铵态氮 Nitrate/ammonium | <0.001 | <0.001 | 0.015 | 0.025 | <0.001 | 0.001 | 0.046 |
Fig. 3 Seasonal dynamics of the soil ammonium contents under different treatments (mean ± SD). P0W0, P0W1, P1W0, P1W1 are refer to the different treatments, indicated removal- plant + controlled temperature, removal-plant + increased temperature, unremoval-plant + controlled temperature, unremoval- plant + increased temperature, respectively. Differences lowercase letters indicated significant differences between different treatments at the same sampling dates (p < 0.05).
指标 Index | 温度 Temperature | 水分 Moisture | 硝态氮 Nitrate | 铵态氮 Ammonium | 硝态氮/铵态氮 Nitrate/ammonium |
---|---|---|---|---|---|
温度 Temperature | 1 | ||||
水分 Moisture | -0.527** | 1 | |||
硝态氮 Nitrate | 0.457** | -0.159 | 1 | ||
铵态氮 Ammonium | 0.047 | 0.294* | -0.404** | 1 | |
硝态氮/铵态氮Nitrate/ammonium | 0.232 | -0.228 | 0.829** | -0.813** | 1 |
Table 2 Correlation between soil moisture and temperature, nitrate and ammonium
指标 Index | 温度 Temperature | 水分 Moisture | 硝态氮 Nitrate | 铵态氮 Ammonium | 硝态氮/铵态氮 Nitrate/ammonium |
---|---|---|---|---|---|
温度 Temperature | 1 | ||||
水分 Moisture | -0.527** | 1 | |||
硝态氮 Nitrate | 0.457** | -0.159 | 1 | ||
铵态氮 Ammonium | 0.047 | 0.294* | -0.404** | 1 | |
硝态氮/铵态氮Nitrate/ammonium | 0.232 | -0.228 | 0.829** | -0.813** | 1 |
Fig. 4 Seasonal dynamics of soil nitrate/ammonium under different treatments (mean ± SD). P0W0, P0W1, P1W0, P1W1 are refer to the different treatments, indicated removal-plant + controlled temperature, removal-plant + increased temperature, unremoval-plant + controlled temperature, unremoval-plant + increased temperature, respectively. Differences lowercase letters indicated significant differences between different treatments at the same sampling dates (p < 0.05).
[1] |
Bade C, Jacob M, Jungkunst HF, Leuschner C, Hauck M ( 2015). Nitrogen mineralization peaks under closed canopy during the natural forest development cycle of an old-growth temperate spruce forest. Annals of forest science, 72, 67-76.
DOI URL |
[2] |
Bahri A, Berndtsson R ( 1996). Nitrogen source impact on the spatial variability of organic carbon and nitrogen in soil. Soil Science, 161, 288-297.
DOI URL |
[3] |
Bai E, Li S, Xu W, Li W, Dai W, Jiang P ( 2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451.
DOI URL PMID |
[4] |
Belaytedla A, Zhou XH, Su B, Wan SQ, Luo YQ ( 2009). Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biology & Biochemistry, 41, 110-116.
DOI URL |
[5] |
Bombonato L, Gerdol R ( 2012). Manipulating snow cover in an alpine bog: Effects on ecosystem respiration and nutrient content in soil and microbes. Climatic Change, 114, 261-272.
DOI URL |
[6] |
Boot CM, Hall EK, Denef K, Baron JS ( 2016). Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem. Soil Biology & Biochemistry, 92, 211-220.
DOI URL |
[7] |
Bruijn AMGD, Butterbach-Bahl K ( 2010). Linking carbon and nitrogen mineralization with microbial responses to substrate availability—The DECONIT model. Plant and Soil, 328, 271-290.
DOI URL |
[8] |
Chen T, Chang Q, Liu J, Clevers JGPW ( 2016). Spatio-?temporal variability of farmland soil organic matter and total nitrogen in the southern Loess Plateau, China: A case study in Heyang County. Environmental Earth Sciences, 75, 28.
DOI URL |
[9] |
Deluca T, Nilsson MC, Zackrisson O ( 2002). Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia, 133, 206-214.
DOI URL PMID |
[10] | Han X ( 2015). Effects of Nitrogen to Plant-microbial on Nitrogen Competition in Temperate Forest. Master degree dissertation, Beijing Forestry University, Beijing. |
[ 韩雪 ( 2015). 土壤中的氮对温带森林植物-微生物竞争氮素的影响. 硕士学位论文, 北京林业大学, 北京.] | |
[11] |
He W, Yang XY, Xiao J, Zhang ZL, Jiang Z, Yuan YS, Wang D, Liu Q, Yin HJ ( 2017). Effects of nitrogen enrichment on root exudation carbon inputs in Sibiraea angustata shrub at the eastern fringe of Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 41, 610-621.
DOI URL |
[ 何为, 杨雪英, 肖娟, 张子良, 蒋铮, 袁远爽, 王东, 刘庆, 尹华军 ( 2017). 氮素富集对青藏高原东缘窄叶鲜卑花灌丛根系分泌物碳输入的影响. 植物生态学报, 41, 610-621.]
DOI URL |
|
[12] | Hu X, Yin P, Wang ZY, Zong H, Wu Y ( 2014). Preliminary study on the effect of snow depth and snow duration on soil N dynamics. Ecology and Environmental Sciences, 23, 593-597. |
[ 胡霞, 尹鹏, 王智勇, 宗华, 吴彦 ( 2014). 雪被厚度和积雪周期对土壤氮素动态影响的初步研究. 生态环境学报, 23, 593-597.] | |
[13] |
Hu YW, Zhang L, Deng BL, Liu YQ, Liu Q, Zheng X, Zheng LY, Kong FQ, Guo XM, Siemann E ( 2017). The non-?additive effects of temperature and nitrogen deposition on CO2 emissions, nitrification, and nitrogen mineralization in soils mixed with termite nests. Catena, 154, 12-20.
DOI URL |
[14] | IPCC (Intergovernmental Panel on Climate Change) ( 2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, New York. |
[15] |
Jackson LE, Burger M, Cavagnaro TR ( 2008). Roots nitrogen transformations, and ecosystem services. Annual Review of Plant Biology, 59, 341-363.
DOI URL |
[16] | K?rner C ( 2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Science & Business Media, Berlin. |
[17] | Li J, Yin CY, Zhou XB, Wei YH, Gao Q, Liu Q ( 2014). Effects of nitrogen addition on soil respiration of Sibiraea angustata shrub in the eastern margin of Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 34, 5558-5569. |
[ 李娇, 尹春英, 周晓波, 魏宇航, 高巧, 刘庆 ( 2014). 施氮对青藏高原东缘窄叶鲜卑花灌丛土壤呼吸的影响. 生态学报, 34, 5558-5569.] | |
[18] |
Liu Y, Wang C, He N, Wen XF, Gao Y, Li SG, Niu SL, Butterbach-Bahl K, Luo YQ, Yu GR ( 2016). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: Latitudinal patterns and mechanisms. Global Change Biology, 23, 155-464.
DOI URL PMID |
[19] | Lu RK ( 2000). Soil Agricultural Chemical Analysis Method. China Agricultural Science and Technology Press, Beijing. |
[ 鲁如坤 ( 2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[20] |
Lu X, Yan Y, Fan J, Wang X ( 2015). Gross nitrification and denitrification in alpine grassland ecosystems on the Tibetan Plateau. Arctic Antarctic & Alpine Research, 44, 188-196.
DOI URL |
[21] | Luo XQ, Wang SJ, Liu XM ( 2007). Nitrogen source and its uptake by plants in terrestrial ecosystems. Chinese of Journal of Ecology, 26, 1094-1100. |
[ 罗绪强, 王世杰, 刘秀明 ( 2007). 陆地生态系统植物的氮源及氮素吸收. 生态学杂志, 26, 1094-1100.] | |
[22] |
M?nsson K, Bengtson P, Falkengrengrerup U, Bengtsson G ( 2009). Plant-microbial competition for nitrogen uncoupled from soil C:N ratios. Oikos, 118, 1908-1916.
DOI URL |
[23] |
Moreau D, Pivato B, Bru D, Busset H, Deau F, Faivre C, Matejicek A, Strbik F, Philippot L. Mougel C ( 2015). Plant traits related to nitrogen uptake influence plant-microbe competition. Ecology, 96, 2300-2310.
DOI URL PMID |
[24] |
Palta MM, Ehrenfeld JG, Giménez D, Groffman PM, Subroy V ( 2016). Soil texture and water retention as spatial predictors of denitrification in urban wetlands. Soil Biology & Biochemistry, 101, 237-250.
DOI URL |
[25] | Powlson DS ( 1993). Understanding the soil nitrogen cycle. Soil Use & Management, 9, 86-94. |
[26] |
Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser I, Simon I, Papen H ( 2009). Nitrogen balance in forest soils: Nutritional limitation of plants under climate change stresses. Plant Biology, 11, 4-23.
DOI URL PMID |
[27] |
Sjogersten S, Wookey PA ( 2015). The role of soil organic matter quality and physical environment for nitrogen mineralization at the forest-tundra ecotone in Fennoscandia. Arctic Antarctic & Alpine Research, 37, 118-126.
DOI URL |
[28] |
Steven B, Léveillé R, Pollard WH, Whyte LG ( 2006). Microbial ecology and biodiversity in permafrost. Extremophiles, 10, 259-267.
DOI URL PMID |
[29] |
Suseela V, Tharayil N, Xing B, Dukes JS ( 2014). Warming alters potential enzyme activity but precipitation regulates chemical transformations in grass litter exposed to simulated climatic changes. Soil Biology & Biochemistry, 75, 102-112.
DOI URL |
[30] |
Wang D, He HL, Gao Q, Zhao CZ, Zhao WQ, Yin CY, Chen LX, Ma ZL, Li DD, Sun DD, Cheng XY, Liu Q ( 2017). Effects of short-term N addition on plant biomass allocation and C and N pools of the Sibiraea angustata scrub ecosystem. European Journal of Soil Science, 68, 212-220.
DOI URL |
[31] |
Wang FL, Bettany JR ( 1995). Carbon and nitrogen losses from undisturbed soil columns under short-term flooding conditions. Canadian Journal of Soil Science, 75, 333-341.
DOI URL |
[32] | Wang GL, Chen DL, Li Y ( 2010). Effect of soil temperature moisture and NH4 +-N concentration on nitrification and nitrification-induced N2O emission . Chinese Journal of Eco-Agriculture, 18, 1-6. |
[ 王改玲, 陈德立, 李勇 ( 2010). 土壤温度, 水分和NH4 +-N浓度对土壤硝化反应速度及N2O排放的影响 . 中国生态农业学报, 18, 1-6.] | |
[33] | Wang JN ( 2013). Adaptable Contribution of Differentiation Patterns of Plant Phenology to Maintaining Nitrogen Utilization of Plants in Alpine Meadows and Its Dynamic Balance. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[ 王金牛 ( 2013). 植物物候分化格局对维持高山草地植物氮素利用及其动态平衡的适应性贡献. 博士学位论文, 中国科学院大学, 北京.] | |
[34] |
Wang WY, Ma YG, Xu J, Wang HC, Zhu JF, Zhou HK ( 2012). The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau. Science China Earth Sciences, 55, 1688-1695.
DOI URL |
[35] |
Wu DD, Jing X, Lin L, Yang XY, Zhang ZH, He JS ( 2016). Responses of soil inorganic nitrogen to warming and alter precipitation in an alpine meadow on the Qinghai-Tibetan Plateau. Acta Scientiarum Naturalium Universities Pekinensis, 52, 959-966.
DOI URL |
[ 武丹丹, 井新, 林笠, 杨新宇, 张振华, 贺金生 ( 2016). 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报(自然科学版), 52, 959-966.]
DOI URL |
|
[36] |
Wu N ( 1998). The community type and biomass of Sibiraea angustata scrub and their relationships with environmental factors in northeastern Sichun. Acta Botanica Sinica, 40, 860-870.
DOI URL |
[ 吴宁 ( 1998). 川西北窄叶鲜卑花灌丛的类型和生物量及其与环境因子的关系. 植物学报, 40, 860-870.]
DOI URL |
|
[37] |
Xiong QL, Pan KW, Zhang L, Luo HY ( 2016). Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai-Tibet Plateau, southwestern China. Applied Soil Ecology, 101, 72-83.
DOI URL |
[38] |
Xu ZF, Hu R, Xiong P, Wan C, Cao G, Liu Q ( 2010). Initial soil responses to experimental warming in two constrasting forest ecosystem, Eastern Tibetan Plateau, China: Nutrient availabilities, microbial properoties and enzyme activities. Applied Soil Ecology, 46, 291-299.
DOI URL |
[39] | Ye MS, Wu B, Guan WB, Ma KM, Liu GH, Zhang YQ ( 2009). Plant community stability in the upper reaches of Minjiang River. Research of Soil and Water Conservation, 16, 259-263. |
[ 冶民生, 吴斌, 关文彬, 马克明, 刘国华, 张宇清 ( 2009). 岷江上游植物群落稳定性研究. 水土保持研究, 16, 259-263.] | |
[40] |
Yin HJ, Li YF, Xiao J, Xu ZF, Cheng XY, Liu Q ( 2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 19, 2158-2167.
DOI URL PMID |
[41] |
Yin R, Xu ZF, Wu FZ, Yang WQ, Xiong L, Xiao S, Ma ZL, Li ZP ( 2014). Seasonal dynamics of soil nitrogen transformation along subalpine elevational gradient of western Sichuan. Scientia Silvae Sinicae, 50(7), 1-7.
DOI URL |
[ 殷睿, 徐振锋, 吴福忠, 杨万勤, 熊莉, 肖洒, 马志良, 李志萍 ( 2014). 川西亚高山不同海拔3种森林群落土壤氮转化的季节动态. 林业科学, 50(7), 1-7.]
DOI URL |
[1] | Die Hu Xinqi Jiang DAI Zhicong Daiyi Chen Yu Zhang Shan-Shan Qi. Arbuscular mycorrhizal fungi enhance the herbicide tolerance of an invasive weed Sphagneticola trilobata [J]. Chin J Plant Ecol, 2024, 48(5): 651-659. |
[2] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[3] | SUONAN Ji, LI Bo-Wen, LÜ Wang-Wang, WANG Wen-Ying, LA Ben, LU Xu-Wei, SONGZHA Cuo, CHEN Cheng-Hao, MIAO Qi, SUN Fang-Hui, WANG Shi-Ping. Changes of phenological sequence of Potentilla saundersiana and its frost resistance under the scenarios of warming and increasing precipitation [J]. Chin J Plant Ecol, 2024, 48(2): 158-170. |
[4] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[5] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[6] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[7] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[8] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[9] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[10] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
[11] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[12] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[13] | CHEN Xin-Yi, WU Chen, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root phenology of forests: a review [J]. Chin J Plant Ecol, 2023, 47(11): 1471-1482. |
[14] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[15] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn