Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (1): 20-27.DOI: 10.17521/cjpe.2017.0133
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
ZHANG Li1,2,WANG Gen-Xu1,RAN Fei1,PENG A-Hui1,2,XIAO Yao1,2,YANG Yang1,YANG Yan1,*()
Online:
2018-01-20
Published:
2018-01-18
Contact:
Yan YANG
Supported by:
ZHANG Li, WANG Gen-Xu, RAN Fei, PENG A-Hui, XIAO Yao, YANG Yang, YANG Yan. Experimental warming changed plants’ phenological sequences of two dominant species in an alpine meadow, western of Sichuan[J]. Chin J Plant Ecol, 2018, 42(1): 20-27.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0133
Fig. 1 Monthly mean air temperature, soil temperature, and soil water content inside and outside the open-top chambers during the growing season. A, Monthly mean air temperature. B, Monthly mean soil temperature at 5 cm soil depth. C, Monthly mean soil temperature at 20 cm soil depth. D, Monthly mean soil water content at 5 cm soil depth. E, Monthly mean soil water content at 20 cm soil depth.
Fig. 2 Phenological shifts at the sequence of Polygonum viviparum (A) and Potentilla leuconota (B). ■, ▲ and ● symbol represent a phenological shift of first, peak, and last of the four stages, respectively. Negative value represents earlier stations than control in days, and the positive value represents delayed stations than control in days. OTCs, open-top chambers.
阶段 Stage | 状态 Station | 银叶委陵菜 Potentilla leuconota | 珠芽拳参 Polygonum viviparum | ||||
---|---|---|---|---|---|---|---|
N | 截距 Intercept | OTCs | N | 截距 Intercept | OTCs | ||
花芽期 Budding | 开始 First | 6 | 5.11*** | -0.03 | 13 | 5.19*** | 0.01 |
峰值 Peak | 6 | 5.17 *** | -0.05 | 13 | 5.19*** | 0.01 | |
结束 Last | 6 | 5.23*** | -0.01 | 13 | 5.28*** | 0.02 | |
开花期 Flowering | 开始 First | 8 | 5.17*** | -0.06 | 10 | 5.28*** | -0.02 |
峰值 Peak | 8 | 5.18*** | 0.02 | 10 | 5.30*** | -0.01 | |
结束 Last | 8 | 5.27*** | -0.02 | 10 | 5.33*** | -0.02 | |
凋谢期 Withering | 开始 First | 8 | 5.18*** | -0.05 | 13 | 5.25*** | 0.02 |
峰值 Peak | 8 | 5.27 *** | -0.03 | 13 | 5.30*** | 0.01 | |
结束 Last | 8 | 5.36 *** | 0.04 | 13 | 5.33*** | 0.01 | |
种子成熟期 Ripe seeds | 开始 First | 8 | 5.23*** | 0.02 | 12 | 5.36*** | -0.02 |
峰值 Peak | 8 | 5.37 *** | 0.02 | 12 | 5.38*** | -0.02 | |
结束 Last | 8 | 5.47*** | 0.01 | 12 | 5.41*** | -0.03 |
Table 1 Parameter estimates of GLME models investigating phenological sequences responses to experimental warming
阶段 Stage | 状态 Station | 银叶委陵菜 Potentilla leuconota | 珠芽拳参 Polygonum viviparum | ||||
---|---|---|---|---|---|---|---|
N | 截距 Intercept | OTCs | N | 截距 Intercept | OTCs | ||
花芽期 Budding | 开始 First | 6 | 5.11*** | -0.03 | 13 | 5.19*** | 0.01 |
峰值 Peak | 6 | 5.17 *** | -0.05 | 13 | 5.19*** | 0.01 | |
结束 Last | 6 | 5.23*** | -0.01 | 13 | 5.28*** | 0.02 | |
开花期 Flowering | 开始 First | 8 | 5.17*** | -0.06 | 10 | 5.28*** | -0.02 |
峰值 Peak | 8 | 5.18*** | 0.02 | 10 | 5.30*** | -0.01 | |
结束 Last | 8 | 5.27*** | -0.02 | 10 | 5.33*** | -0.02 | |
凋谢期 Withering | 开始 First | 8 | 5.18*** | -0.05 | 13 | 5.25*** | 0.02 |
峰值 Peak | 8 | 5.27 *** | -0.03 | 13 | 5.30*** | 0.01 | |
结束 Last | 8 | 5.36 *** | 0.04 | 13 | 5.33*** | 0.01 | |
种子成熟期 Ripe seeds | 开始 First | 8 | 5.23*** | 0.02 | 12 | 5.36*** | -0.02 |
峰值 Peak | 8 | 5.37 *** | 0.02 | 12 | 5.38*** | -0.02 | |
结束 Last | 8 | 5.47*** | 0.01 | 12 | 5.41*** | -0.03 |
Fig. 4 Effects of open-top chambers (OTCs) warming on the period between the peak time of the neighboring stages of Polygonum viviparum (A) and Potentilla leuconota (B) (mean ± SE).
[1] |
Amano T, Smithers RJ, Sparks TH, Sutherland WJ ( 2010). A 250-year index of first flowering dates and its response to temperature changes. Proceedings of the Royal Society of London B: Biological Sciences, 277, 2451-2457.
DOI URL PMID |
[2] |
Arft A, Walker M, Gurevitch J, Alatalo J, Bret-Harte M, Dale M, Diemer M, Gugerli F, Henry G, Jones M ( 1999). Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecological Monographs, 69, 491-511.
DOI URL |
[3] |
Badeck FW, Bondeau A, B?ttcher K, Doktor D, Lucht W, Schaber J, Sitch S ( 2004). Responses of spring phenology to climate change. New Phytologist, 162, 295-309.
DOI URL |
[4] |
Beaubien E, Freeland H ( 2000). Spring phenology trends in Alberta, Canada: Links to ocean temperature. International Journal of Biometeorology, 44, 53-59.
DOI URL PMID |
[5] |
CaraDonna PJ, Iler AM, Inouye DW ( 2014). Shifts in flowering phenology reshape a subalpine plant community. Proceedings of the National Academy of Sciences of the United States of America, 111, 4916-4921.
DOI URL |
[6] |
Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB ( 2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 103, 13740-13744.
DOI URL PMID |
[7] | Ding YH, Wang HJ ( 2015). Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China. Chinese Science Bulletin, 61, 1029-1041. |
[ 丁一汇, 王会军 ( 2015). 近百年中国气候变化科学问题的新认识. 科学通报, 61, 1029-1041.] | |
[8] |
Dorji T, Totland ?, Moe SR, Hopping KA, Pan J, Klein JA ( 2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
DOI URL PMID |
[9] |
Dudgeon SR, Steneck RS, Davison IR, Vadas RL ( 1999). Coexistence of similar species in a space-limited intertidal zone. Ecological Monographs, 69, 331-352.
DOI URL |
[10] |
Forrest J, Miller-Rushing AJ ( 2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. The Royal Society, 365, 3101-3112.
DOI URL PMID |
[11] |
Gugger S, Kesselring H, Stocklin J, Hamann E ( 2015). Lower plasticity exhibited by high-versus mid-elevation species in their phenological responses to manipulated temperature and drought. Annals of Botany, 116, 953-962.
DOI URL PMID |
[12] |
Hollister RD, Webber PJ, Bay C ( 2005). Plant response to temperature in northern Alaska: Implications for predicting vegetation change. Ecology, 86, 1562-1570.
DOI URL |
[13] |
Iler AM, H?ye TT, Inouye DW, Schmidt NM ( 2013). Nonlinear flowering responses to climate: Are species approaching their limits of phenological change? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368, 20120489, doi: 10.1098/rstb.2012.0489.
DOI URL PMID |
[14] |
Inouye DW ( 2008). Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89, 353-362.
DOI URL |
[15] | IPCC (Intergovernmental Panel on Climate Change) ( 2013) : Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on climate change. In: Stocker TF, Qin DH, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[16] | Jonasson S, Havstr?m M, Jensen M, Callaghan TV ( 1993). In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia, 95, 179-186. |
[17] |
Klein JA, Harte J, Zhao XQ ( 2004). Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 7, 1170-1179.
DOI URL |
[18] |
Li ZX, He YQ, Xin HJ, Wang CF, Jia WX, Zhang W, Liu J ( 2010). Spatio-temporal variations of temperature and precipitation in Mts. Hengduan Region during 1960-2008. Acta Geographica Sinica, 65, 563-579.
DOI URL |
[ 李宗省, 何元庆, 辛惠娟, 王春凤, 贾文雄, 张蔚, 刘婧 ( 2010). 我国横断山区1960-2008年气温和降水时空变化特征. 地理学报, 65, 563-579.]
DOI URL |
|
[19] |
Liu YZ, Reich PB, Li GY, Sun SC ( 2011). Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology, 92, 1201-1207.
DOI URL |
[20] |
Memmott J, Craze PG, Waser NM, Price MV ( 2007). Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10, 710-717.
DOI URL |
[21] |
Meng FD, Cui SJ, Wang SP, Duan JC, Jiang LL, Zhang ZH, Luo CY, Wang Q, Zhou Y, Li XN, Zhang LR, Dorji T, Li YN, Du MY, Wang GJ ( 2016). Changes in phenological sequences of alpine communities across a natural elevation gradient. Agricultural and Forest Meteorology, 224, 11-16.
DOI URL |
[22] |
Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavská O, Briede A ( 2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969-1976.
DOI URL |
[23] |
Pe?uelas J, Filella I ( 2001). Responses to a warming world. Science, 294, 793-795.
DOI URL PMID |
[24] |
Pe?uelas J, Filella I ( 2009). Phenology feedbacks on climate change. Science, 324, 887-888.
DOI URL PMID |
[25] |
Pe?uelas J, Filella I, Comas P ( 2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531-544.
DOI URL |
[26] |
Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Sch?ner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ ( 2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5, 424-430.
DOI URL |
[27] |
Post ES, Pedersen C, Wilmers CC, Forchhammer MC ( 2008). Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370.
DOI URL |
[28] |
Price MV, Waser NM ( 1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology, 79, 1261-1271.
DOI URL |
[29] |
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA ( 2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.
DOI URL PMID |
[30] |
Schwartz MD, Reiter BE ( 2000). Changes in North American spring. International Journal of Climatology, 20, 929-932.
DOI URL |
[31] |
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, de Siqueira MF, Grainger A, Hannah L ( 2004). Extinction risk from climate change. Nature, 427, 145-148.
DOI URL PMID |
[32] |
Tilman D, Lehman CL, Thomson KT ( 1997). Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861.
DOI URL PMID |
[33] | Totland ?, Schulte-Herbrüggen B ( 2003). Breeding system, insect flower visitation, and floral traits of two alpine Cerastium species in Norway. Arctic, Antarctic, and Alpine Research, 35, 242-247. |
[34] |
Wang SP, Meng FD, Duan JC, Wang YF, Cui XY, Piao SL, Niu HS, Xu GP, Luo CY, Zhang ZH ( 2014). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 95, 3387-3398.
DOI URL |
[35] |
Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ ( 2012). Warming experiments under predict plant phenological responses to climate change. Nature, 485, 494-497.
DOI URL PMID |
[36] |
Yang Y, Wang GX, Klanderud K, Wang JF, Liu GS ( 2015). Plant community responses to five years of simulated climate warming in an alpine fen of the Qinghai-Tibetan Plateau. Plant Ecology & Diversity, 8, 211-218.
DOI URL |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[3] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[7] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[8] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[9] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[10] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[11] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[12] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[13] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[14] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[15] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn