Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (12): 1179-1191.DOI: 10.17521/cjpe.2018.0176
• Research Articles • Previous Articles Next Articles
ZHANG Zhen-Zhen1,*(),ZHAO Ping2,ZHAO Xiu-Hua2,ZHANG Jin-Xiu1,ZHU Li-Wei2,OUYANG Lei2,ZHANG Xiao-Yan1
Received:
2018-07-30
Revised:
2018-10-23
Online:
2018-12-20
Published:
2019-04-04
Contact:
Zhen-Zhen ZHANG
Supported by:
ZHANG Zhen-Zhen, ZHAO Ping, ZHAO Xiu-Hua, ZHANG Jin-Xiu, ZHU Li-Wei, OUYANG Lei, ZHANG Xiao-Yan. Impact of environmental factors on the decoupling coefficient and the estimation of canopy stomatal conductance for ever-green broad-leaved tree species[J]. Chin J Plant Ecol, 2018, 42(12): 1179-1191.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0176
树种 Species | 密度 Density | n | DBH | H | As | LAI | l | Al | Ac |
---|---|---|---|---|---|---|---|---|---|
木荷 S. superba | 603 | 21 | 15.5 (1.3)a | 12.7 (0.5)a | 0.018 (0.002)a | 4.3 (0.1)a | 9.1 (0.4)a | 66.6 (10.2)a | 20.7 (2.9)a |
尾叶桉 E. urophylla | 1 375 | 15 | 10.1 (0.6)b | 11.5 (0.8)a | 0.007 (0.001)b | 1.5 (0.1)b | 10.9 (0.2)b | 21.0 (2.7)b | 4.0 (0.2)b |
Table 1 Stand parameters of Schima superba and Eucalyptus urophylla
树种 Species | 密度 Density | n | DBH | H | As | LAI | l | Al | Ac |
---|---|---|---|---|---|---|---|---|---|
木荷 S. superba | 603 | 21 | 15.5 (1.3)a | 12.7 (0.5)a | 0.018 (0.002)a | 4.3 (0.1)a | 9.1 (0.4)a | 66.6 (10.2)a | 20.7 (2.9)a |
尾叶桉 E. urophylla | 1 375 | 15 | 10.1 (0.6)b | 11.5 (0.8)a | 0.007 (0.001)b | 1.5 (0.1)b | 10.9 (0.2)b | 21.0 (2.7)b | 4.0 (0.2)b |
Fig. 1 Meteorological conditions during study periods. A, Photosynthetic photon flux density (PAR). B, Vapor pressure deficit (D). C, Daily mean air temperature (Ta). D, Soil water content (SWC).
Fig. 3 Diurnal course of photosynthetically active radiation (PAR, μmol m-2·s-1) (A, B), vapor pressure deficit (D, kPa) (C, D), and decoupling coefficient (Ω) (E, F) for Eucalyptus urophylla and Schima superba stands (mean ± SE) respectively.
Fig. 4 Relationships between decoupling coefficient (Ω) and (A, D) photosynthetically active radiation (PAR,) as well as (B, E) vapor pressure deficit (D), (C, F) wind speed in Eucalyptus urophylla and Schima superba stands. Only boundary line data area shown in the figure.
Fig. 6 Daily variation of canopy stomatal conductance (GS) estimated from the K?stner equation (GS1, ○) and the inverse Penman-?Monteith equation (GS2, △) for Eucalyptus urophylla (A-D) and Schima superba (E-H).
Fig. 7 Relationship between stomatal conductance estimated from the K?stner equation (GS1) and the inverse Penman-Monteith equation (GS2) for Eucalyptus urophylla and Schima superba.
Fig. 8 Proportional increase of sensitivity of tree crown-level stomatal conductance (GS) to vapor pressure deficit (-m) with the conductance at vapor pressure deficit (D) = 1 kPa (GSref). Values are from boundary line fits of one month subsets of data. Lines are the least-square fit (p < 0.001) for each method combination. GS1, line and open circle; GS2, dash dot and asterisk
变量 Variables | 缩写 Abbreviations | 单位 Units |
---|---|---|
冠层气孔导度 Canopy stomatal conductance | GS | mmol·m-2·s-1 |
冠层脱耦联系数 Canopy decoupling coefficient | Ω | 无纲量 No dimension |
光合有效辐射 Photosynthetically active radiation | PAR | μmol·m-2·s-1 |
水汽压亏缺 Water vapor deficit | D | kPa |
风速 Wind speed | u | m·s-1 |
水汽导度 Water vapor conductance | GT | mmol·m-2·s-1 |
冠层导度 Canopy conductance | gc | mmol·m-2·s-1 |
空气动力学导度 Aerodynamic conductance | ga | mmol·m-2·s-1 |
树木蒸腾速率 Tree transpiration rates | E | g·m-2·s-1 |
叶面积指数 Leaf area index | LAI | m2·m-2 |
胸径 Diameter at breast height | DBH | cm |
树高 Tree height | H | m |
边材面积 Sap wood area | AS | m2 |
总叶面积 Total leaf area | Al | m2 |
气动阻力 Stomatal resistance | ra | s·m-1 |
土壤含水量 Soil water content | SWC | m3·m-3 |
Table 2 Common variables and their abbreviations
变量 Variables | 缩写 Abbreviations | 单位 Units |
---|---|---|
冠层气孔导度 Canopy stomatal conductance | GS | mmol·m-2·s-1 |
冠层脱耦联系数 Canopy decoupling coefficient | Ω | 无纲量 No dimension |
光合有效辐射 Photosynthetically active radiation | PAR | μmol·m-2·s-1 |
水汽压亏缺 Water vapor deficit | D | kPa |
风速 Wind speed | u | m·s-1 |
水汽导度 Water vapor conductance | GT | mmol·m-2·s-1 |
冠层导度 Canopy conductance | gc | mmol·m-2·s-1 |
空气动力学导度 Aerodynamic conductance | ga | mmol·m-2·s-1 |
树木蒸腾速率 Tree transpiration rates | E | g·m-2·s-1 |
叶面积指数 Leaf area index | LAI | m2·m-2 |
胸径 Diameter at breast height | DBH | cm |
树高 Tree height | H | m |
边材面积 Sap wood area | AS | m2 |
总叶面积 Total leaf area | Al | m2 |
气动阻力 Stomatal resistance | ra | s·m-1 |
土壤含水量 Soil water content | SWC | m3·m-3 |
树种 Species | Ω区间 Ω interval | Pi |
---|---|---|
0.00-0.05 | - | |
0.05-0.10 | 0.57 (0.06) | |
尾叶桉 E. urophylla | 0.10-0.15 | 0.58 (0.06) |
0.15-0.20 | 1.04 (0.16)** | |
0.20-0.25 | 8.32 (7.62)** | |
0.25-0.3 | 1.43(5.02)** | |
0.00-0.05 | - | |
0.05-0.10 | 0.75 (0.13)** | |
木荷 S. superba | 0.10-0.15 | 0.61 (0.10) |
0.15-0.20 | 0.58 (0.08) | |
0.20-0.25 | 0.70 (0.13)** | |
0.25-0.30 | 1.21 (0.40)** |
Table 3 The proportion between the ratio of the sensitivity of canopy stomatal conductance to vapor pressure deficit (-m) and stomatal conductance at vapor pressure deficit = 1 kPa (GSiref) (Pi) for Ecalyptus urophylla and Schima superba at each canopy decoupling coefficient (Ω) interval
树种 Species | Ω区间 Ω interval | Pi |
---|---|---|
0.00-0.05 | - | |
0.05-0.10 | 0.57 (0.06) | |
尾叶桉 E. urophylla | 0.10-0.15 | 0.58 (0.06) |
0.15-0.20 | 1.04 (0.16)** | |
0.20-0.25 | 8.32 (7.62)** | |
0.25-0.3 | 1.43(5.02)** | |
0.00-0.05 | - | |
0.05-0.10 | 0.75 (0.13)** | |
木荷 S. superba | 0.10-0.15 | 0.61 (0.10) |
0.15-0.20 | 0.58 (0.08) | |
0.20-0.25 | 0.70 (0.13)** | |
0.25-0.30 | 1.21 (0.40)** |
[1] | Anton H, Andrés I, James B ( 2008). Effect of Pinus radiata plantations on water balance in Chile. Hydrological Processes, 22, 142-148. |
[2] |
Aphalo P, Jarvis P ( 1991). Do stomata respond to relative humidity?Plant, Cell & Environment, 14, 127-132.
DOI URL |
[3] |
Barradas VL, Nicolás E, Torrecillas A, Alarcón JJ ( 2005). Transpiration and canopy conductance in young apricot ( Prunus armenica L.) trees subjected to different PAR levels and water stress. Agricultural Water Management, 77, 323-333.
DOI URL |
[4] |
Bladon KD, Silins U, Landh?usser SM, Lieffers VJ ( 2006). Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting. Agricultural and Forest Meteorology, 138, 104-119.
DOI URL |
[5] |
Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X ( 1997). Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. Journal of Geophysical Research: Atmospheres, 102, 28915-28927.
DOI URL |
[6] |
Cabral OM, Rocha HR, Gash JH, Ligo MA, Freitas HC, Tatsch JD ( 2010). The energy and water balance of a Eucalyptus plantation in southeast Brazil. Journal of Hydrology, 388, 208-216.
DOI |
[7] |
Campbell-Clause J ( 1998). Stomatal response of grapevines to wind. Australian Journal of Experimental Agriculture, 38, 77-82.
DOI URL |
[8] |
Cienciala E, Ku?era J, Malmer A ( 2000). Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo. Journal of Hydrology, 236, 109-120.
DOI URL PMID |
[9] |
Cienciala E, Kucera J, Ryan MG, Lindroth A ( 1998). Water flux in boreal forest during two hydrologically contrasting years: Species specific regulation of canopy conductance and transpiration. Annales des Sciences Forestieres, 55, 47-61.
DOI URL |
[10] |
Daudet FA, Le Roux X, Sinoquet H, Adam B ( 1999). Wind speed and leaf boundary layer conductance variation within tree crown: Consequences on leaf-to-atmosphere coupling and tree functions. Agricultural and Forest Meteorology, 97, 171-185.
DOI URL |
[11] |
Dixon M, Grace J ( 1984). Effect of wind on the transpiration of young trees. Annals of Botany, 53, 811-819.
DOI URL |
[12] | Dye P, Olbrich B ( 1993). Estimating transpiration from 6-year-old Eucalyptus grandis trees: Development of a canopy conductance model and comparison with independent sap flux measurements. Plant, Cell & Environment, 16, 45-53. |
[13] |
Ewers B, Gower S, Bond-lamberty B, Wang C ( 2005). Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant, Cell & Environment, 28, 660-678.
DOI URL |
[14] |
Ewers BE, Mackay DS, Samanta S ( 2007). Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species. Tree Physiology, 27, 11-24.
DOI URL PMID |
[15] | Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE ( 2010). Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest Ecology and Management, 259, 1761-1770. |
[16] |
Granier A ( 1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI URL PMID |
[17] |
Granier A, Biron P, Bréda N, Pontailler J, Saugier B ( 1996). Transpiration of trees and forest stands: Short and long-term monitoring using sap flow methods. Global Change Biology, 2, 265-274.
DOI URL |
[18] |
Granier A, Loustau D ( 1994). Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agricultural and Forest Meteorology, 71, 61-81.
DOI URL |
[19] |
Granier A , Loustau, D, Bréda, N ( 2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science, 57, 755-765.
DOI URL |
[20] |
Gutiérrez M, Meinzer F, Grantz D ( 1994). Regulation of transpiration in coffee hedgerows: Covariation of environmental variables and apparent responses of stomata to wind and humidity. Plant, Cell & Environment, 17, 1305-1313.
DOI URL |
[21] |
Herbst M ( 1995). Stomatal behaviour in a beech canopy: An analysis of Bowen ratio measurements compared with porometer data. Plant, Cell & Environment, 18, 1010-1018.
DOI URL |
[22] |
Hutley LB, O’grady AP, Eamus D ( 2001). Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia, 126, 434-443.
DOI URL PMID |
[23] |
Jarvis P ( 1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London B, 273, 593-610.
DOI URL |
[24] |
Jarvis P, McNaughton K ( 1986). Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research, 15, 1-49.
DOI URL |
[25] | Jones H ( 1992). Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, Cambridge, UK. |
[26] |
Katsoulas N, Baille A, Kittas C ( 2007). Leaf boundary layer conductance in ventilated greenhouses: An experimental approach. Agricultural and Forest Meteorology, 144, 180-192.
DOI URL |
[27] |
Kelliher F, Leuning R, Schulze E ( 1993). Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia, 95, 153-163.
DOI URL PMID |
[28] |
Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC ( 2014). Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 187, 62-71.
DOI URL |
[29] |
Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC ( 2014). Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 187, 62-71.
DOI URL |
[30] |
Kim HS, Oren R, Hinckley TM ( 2008). Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiology, 28, 559-577.
DOI URL PMID |
[31] |
Komatsu H ( 2003). Values of the decoupling factor observed on forest canopies. Journal of Japan Society of Hydrology and Water Resources, 16, 423-438.
DOI URL |
[32] | Komatsu H, Onozawa Y, Kume T, Tsuruta K, Shinohara Y, Otsuki K ( 2012). Canopy conductance for a Moso bamboo ( Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology, 156, 111-120. |
[33] |
Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M ( 2004). Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: Dry spell effects. Journal of Hydrology, 287, 237-251.
DOI URL |
[34] |
Kumagai T, Tateishi M, Shimizu T, Otsuki K ( 2008). Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agricultural and Forest Meteorology, 148, 1444-1455.
DOI URL |
[35] |
Law BE, Goldstein AH, Anthoni PM, Unsworth MH, Panek JA, Bauer MR, Fracheboud JM, Hultman N ( 2001). Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer. Tree Physiology, 21, 299-308.
DOI URL PMID |
[36] |
Little C, Lara A, McPhee J, Urrutia R ( 2009). Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile. Journal of Hydrology, 374, 162-170.
DOI URL |
[37] |
Lu P, Yunusa IAM, Walker RR, Müller WJ ( 2003). Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines. Functional Plant Biology, 30, 689-698.
DOI URL |
[38] |
Magnani F, Leonardi S, Tognetti R, Grace J, Borghetti M ( 1998). Modelling the surface conductance of a broad-leaf canopy: Effects of partial decoupling from the atmosphere. Plant, Cell & Environment, 21, 867-879.
DOI URL |
[39] | Martin T, Brown KJ, Cermak J, Ceulemans R, Kucera J, Meinzer FC, Rombold JS, Sprugel DG, Hinckley TM ( 1997). Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest. Canadian Journal of Forest Research, 27, 2457-2464. |
[40] |
Maruyama A, Kuwagata T ( 2008). Diurnal and seasonal variation in bulk stomatal conductance of the rice canopy and its dependence on developmental stage. Agricultural and Forest Meteorology, 148, 1161-1173.
DOI URL |
[41] | McNaughton K, Jarvis PG ( 1983). Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT ed. Water Deficits and Plant Growth. Academic Press, New York. 1-47. |
[42] | Mei TT, Zhao P, Wang Q, Cai XA, Yu MH, Zhu LW, Zou LL, Zeng XP ( 2010). Effects of tree diameter at breast height and soil moisture on transpiration of Schima superba based on sap flow pattern and normalization. Chinese Journal of Applied Ecology, 21, 2457-2464. |
[ 梅婷婷, 赵平, 王权, 蔡锡安, 余孟好, 朱丽薇, 邹绿柳, 曾小平 ( 2010). 基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响. 应用生态学报, 21, 2457-2464.] | |
[43] | Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Jackson P ( 1997). Control of transpiration from the upper canopy of a tropical forest: The role of stomatal, boundary layer and hydraulic architecture components.. Plant, Cell & Environment, 20, 1242-1252. |
[44] |
Mielke MS, Oliva MA, de Barros NF, Penchel RM, Martinez CA, de Almeida AC ( 1999). Stomatal control of transpiration in the canopy of a clonal Eucalyptus grandis plantation. Trees, 13, 152-160.
DOI URL |
[45] | Monteith JL, Unsworth MH ( 2007). Principles of Environmental Physics. Academic Press, New York. |
[46] |
Motzer T, Munz N, Küppers M, Schmitt D, Anhuf D ( 2005). Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Tree Physiology, 25, 1283-1293.
DOI URL PMID |
[47] |
Nicolás E, Barradas VL, Ortu?o MF, Navarro A, Torrecillas A, Alarcón JJ ( 2008). Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net. Environmental and Experimental Botany, 63, 200-206.
DOI URL |
[48] |
Oren R, Ewers BE, Todd P, Phillips N, Katul G ( 1998). Water balance delineates the soil layer in which moisture affects canopy conductance. Ecological Applications, 8, 990-1002.
DOI URL |
[49] |
Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP ( 1999 a). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology, 19, 337-347.
DOI URL PMID |
[50] |
Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP ( 2001). Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: Hydraulic and non-hydraulic effects. Oecologia, 126, 21-29.
DOI URL PMID |
[51] |
Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Sch?fer KVR ( 1999 b). Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment, 22, 1515-1526.
DOI URL |
[52] |
Sch?fer KV, Oren R, Tenhunen J ( 2000). The effect of tree height on crown level stomatal conductance. Plant, Cell & Environment, 23, 365-375.
DOI URL |
[53] |
Taylor PJ, Nuberg IK, Hatton TJ ( 2001). Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation. Tree Physiology, 21, 403-408.
DOI URL PMID |
[54] |
Wallace J, Roberts J, Sivakumar M ( 1990). The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices. Agricultural and Forest Meteorology, 51, 35-49.
DOI URL |
[55] |
Wei Z, Liu Y, Xu D, Cai J, Zhang B ( 2013). Application and comparison of winter wheat canopy resistance estimation models based on the scaling-up of leaf stomatal conductance. Chinese Science Bulletin, 58, 2909-2916.
DOI URL |
[56] |
Whitley R, Medlyn B, Zeppel M, Macinnis-Ng C, Eamus D ( 2009). Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance. Journal of Hydrology, 373, 256-266.
DOI URL |
[57] |
Wullschleger SD, Wilson KB, Hanson PJ ( 2000). Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agricultural and Forest Meteorology, 104, 157-168.
DOI URL |
[58] |
Zeppel M, Eamus D ( 2008). Coordination of leaf area, sapwood area and canopy conductance leads to species convergence of tree water use in a remnant evergreen woodland. Australian Journal of Botany, 56, 97-108.
DOI URL |
[59] |
Zhao P, Rao XQ, Ma L, Cai XA, Zeng XP ( 2006). Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors. Journal of Applied Ecology, 17, 1149-1156.
DOI |
[ 赵平, 饶兴权, 马玲, 蔡锡安, 曾小平 ( 2006). 马占相思林冠层气孔导度对环境驱动因子的响应. 应用生态学报, 17, 1149-1156.]
DOI |
|
[60] |
Zhu LW, Zhao P, Cai XA, Zeng XP, Ni GY, Zhang JY, Zou LL, Mei TT, Yu MH ( 2012). Effects of sap velocity on the daytime increase of stem CO2 efflux from stems of Schima superba trees. Trees, 26, 535-542.
DOI URL |
[1] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[2] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[3] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[4] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[5] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[6] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[7] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[8] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[9] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[10] | HUANG Jie, LI Xiao-Ling, WANG Xue-Song, YANG Jin, HUANG Cheng-Ming. Characteristics of Distylium chinense communities and their relationships with soil environmental factors in different water level fluctuation zones of the Three Gorges Reservoir, China [J]. Chin J Plant Ecol, 2021, 45(8): 844-859. |
[11] | LUO Ming-Mo, CHEN Yue, YANG Gang, HU Bin, LI Wei, CHEN Huai. Short-term response of soil prokaryotic community structure to water level restoration in degraded peatland of the Zoigê Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 552-561. |
[12] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[13] | ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions [J]. Chin J Plant Ecol, 2021, 45(4): 370-382. |
[14] | LI Yuan-Yuan, ZHANG Yun, KONG Zhao-Chen, YANG Zhen-Jing. Surface sporopollen and modern vegetation in Hongshanzui area, Altai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(2): 174-186. |
[15] | CHEN Sheng-Nan, CHEN Zuo-Si-Nan, ZHANG Zhi-Qiang. Canopy stomatal conductance characteristics of Pinus tabulaeformis and Acer truncatum and their responses to environmental factors in the mountain area of Beijing [J]. Chin J Plant Ecol, 2021, 45(12): 1329-1340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn