Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (6): 619-625.DOI: 10.3724/SP.J.1258.2014.00057
Special Issue: 青藏高原植物生态学:植物-土壤-微生物
• Research Articles • Previous Articles Next Articles
WANG Hao1,2,YU Ling-Fei3,CHEN Li-Tong1,WANG Chao4,HE Jin-Sheng1,4,*()
Received:
2014-01-20
Accepted:
2014-04-10
Online:
2014-01-20
Published:
2014-06-10
Contact:
HE Jin-Sheng
WANG Hao,YU Ling-Fei,CHEN Li-Tong,WANG Chao,HE Jin-Sheng. Responses of soil respiration to reduced water table and nitrogen addition in an alpine wetland on the Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2014, 38(6): 619-625.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00057
Fig. 1 Variations in water table depth (A), soil temperature at 5 cm depth (B), and soil respiration rate (C) under different treatments over the experimental period (mean ± SE, n = 5). ●, control; ■, reduced water table; ▽, nitrogen addition; ◇, combination of reduced water table and nitrogen addition.
土壤呼吸速率SR | 5 cm深处土壤温度 T | 水位深度 WTD | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
N+ | 0.91 | 0.36 | 0.08 | 0.78 | 1.05 | 0.32 |
WT- | 338.94 | <0.001 | 6.64 | 0.02 | 1 183.00 | <0.001 |
N+ × WT- | 6.24 | 0.02 | 2.02 | 0.17 | 0.46 | 0.51 |
D | 37.26 | <0.001 | 205.06 | <0.001 | 24.94 | <0.001 |
D × N+ | 0.68 | 0.67 | 0.42 | 0.74 | 3.06 | 0.05 |
D × WT- | 10.93 | <0.001 | 2.08 | 0.11 | 22.59 | <0.001 |
D × N+ × WT- | 2.37 | 0.05 | 0.99 | 0.41 | 1.80 | 0.18 |
Table 1 Summary of repeated-measures ANOVAs for soil respiration rate (SR), soil temperature at 5 cm depth (T), and water table depth (WTD) by using nitrogen addition (N+) and reduced water table (WT-) as main factors, and measurement date (D) as a within-subject factor over the experimental period
土壤呼吸速率SR | 5 cm深处土壤温度 T | 水位深度 WTD | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
N+ | 0.91 | 0.36 | 0.08 | 0.78 | 1.05 | 0.32 |
WT- | 338.94 | <0.001 | 6.64 | 0.02 | 1 183.00 | <0.001 |
N+ × WT- | 6.24 | 0.02 | 2.02 | 0.17 | 0.46 | 0.51 |
D | 37.26 | <0.001 | 205.06 | <0.001 | 24.94 | <0.001 |
D × N+ | 0.68 | 0.67 | 0.42 | 0.74 | 3.06 | 0.05 |
D × WT- | 10.93 | <0.001 | 2.08 | 0.11 | 22.59 | <0.001 |
D × N+ × WT- | 2.37 | 0.05 | 0.99 | 0.41 | 1.80 | 0.18 |
Fig. 2 Effects of different treatments on soil respiration over the experimental period (mean ± SE, n = 5). WT0 N0, control; WT- N0, reduced water table; WT0 N+, nitrogen addition; WT- N+, combination of reduced water table and nitrogen addition. Different letters indicate significant differences among treatments (p < 0.05).
处理 Treatment | 回归方程 Regression equation | R2 | p | Q10 |
---|---|---|---|---|
WT0 N0 | SR = 0.882e0.026T | 0.209 | 0.006 | 1.30c |
WT0 N+ | SR = 0.421e0.064T | 0.492 | <0.001 | 1.90bc |
WT- N0 | SR = 1.113e0.107T | 0.474 | <0.001 | 2.92a |
WT- N+ | SR = 1.664e0.089T | 0.416 | <0.001 | 2.44ab |
Table 2 The fittings of exponential regression functions between soil respiration rate (SR) and soil temperature at 5 cm depth (T) and the values of temperature sensitivity of soil respiration (Q10)
处理 Treatment | 回归方程 Regression equation | R2 | p | Q10 |
---|---|---|---|---|
WT0 N0 | SR = 0.882e0.026T | 0.209 | 0.006 | 1.30c |
WT0 N+ | SR = 0.421e0.064T | 0.492 | <0.001 | 1.90bc |
WT- N0 | SR = 1.113e0.107T | 0.474 | <0.001 | 2.92a |
WT- N+ | SR = 1.664e0.089T | 0.416 | <0.001 | 2.44ab |
Fig. 3 Relationships of soil respiration rate with biomass and litter accumulation under different treatments. A, Aboveground biomass. B, Litter accumulation. C, Root biomass in 0-10 cm soil layer. D, Root biomass in 0-20 cm soil layer. WT0 N0, control; WT- N0, reduced water table; WT0 N+, nitrogen addition; WT- N+, combination of reduced water table and nitrogen addition. The Pearson correlation coefficient is shown if significant. *, p < 0.05; ***, p < 0.001.
[1] |
Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T (2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389.
URL PMID |
[2] |
Bridgham SD, Pastor J, Dewey B, Weltzin JF, Updegraff K (2008). Rapid carbon response of peatlands to climate change. Ecology, 89, 3041-3048.
DOI URL PMID |
[3] |
Bubier JL, Moore TR, Bledzki LA (2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13, 1168-1186.
DOI URL |
[4] |
Chimner RA, Cooper DJ (2003). Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biology & Biochemistry, 35, 345-351.
DOI URL |
[5] |
Craine JM, Wedin DA, Reich PB (2001). The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply and plant diversity. Global Change Biology, 7, 947-953.
DOI URL |
[6] |
Dinsmore KJ, Skiba UM, Billett MF, Rees RM (2009). Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant and Soil, 318, 229-242.
DOI URL |
[7] |
Fenner N, Freeman C (2011). Drought-induced carbon loss in peatlands. Nature Geoscience, 4, 895-900.
DOI URL |
[8] |
Gorham E (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
DOI URL PMID |
[9] |
Gruber N, Galloway JN (2008). An earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296.
DOI URL PMID |
[10] |
Janssens I, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322.
DOI URL |
[11] | Jimenez K, Starr G, Staudhammer C, Schedlbauer J, Loescher H, Malone S, Oberbauer S (2012). Carbon dioxide exchange rates from short- and long-hydroperiod everglades freshwater marsh. Journal of Geophysical Research, 117(G4), doi: 10.1029/2012JG002117. |
[12] | Lü CQ, Tian HQ (2007). Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. Journal of Geophysical Research, 112, D22S05, doi: 10.1029/2006JD007990. |
[13] |
Liu XD, Chen BD (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
DOI URL |
[14] |
Mäkiranta P, Laiho R, Fritze H, Hytönen J, Laine J, Minkkinen K (2009). Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biology & Biochemistry, 41, 695-703.
DOI URL |
[15] |
Mo JG, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412.
DOI URL |
[16] |
Muhr J, Höhle J, Otieno DO, Borken W (2011). Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany. Ecological Applications, 21, 391-401.
URL PMID |
[17] |
Olsson P, Linder S, Giesler R, Högberg P (2005). Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology, 11, 1745-1753.
DOI URL |
[18] |
Raich J, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99.
DOI URL |
[19] |
Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
DOI URL |
[20] |
Silvola J, Alm J, Ahlholm U, Nykaenen H, Martikainen PJ (1996). The contribution of plant roots to CO2 fluxes from organic soils. Biology and Fertility of Soils, 23, 126-131.
DOI URL |
[21] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007―the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK. |
[22] |
Tao BX, Song CC, Guo YD (2013). Short-term effects of nitrogen additions and increased temperature on wetland soil respiration, Sanjiang Plain, China. Wetlands, 33, 727-736.
DOI URL |
[23] |
Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002). Estimating carbon accumulation rates of undrained mires in Finland―application to boreal and subarctic regions. The Holocene, 12, 69-80.
DOI URL |
[24] | Verry E (1997). Hydrological processes of natural, northern forested wetlands. Northern Forested Wetlands: Ecology and Management, 163-188. |
[25] |
Wang GX, Li YS, Wang YB, Chen L (2007). Typical alpine wetland system changes on the Qinghai-Tibet Plateau in recent 40 years. Acta Geographica Sinica, 62, 481-491. (in Chinese with English abstract)
DOI URL |
[ 王根绪, 李元寿, 王一博, 陈玲 (2007). 近40年来青藏高原典型高寒湿地系统的动态变化. 地理学报, 62, 481-491.]
DOI URL |
|
[26] |
Yan LM, Chen SP, Huang JH, Lin GH (2010). Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Global Change Biology, 16, 2345-2357.
DOI URL |
[27] |
Yang JS, Liu JS, Hu XJ, Li XX, Wang Y, Li HY (2013). Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biology & Biochemistry, 61, 52-60.
DOI URL |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[3] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[4] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[5] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[6] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[7] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[8] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[9] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[10] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[11] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[12] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[13] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[14] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[15] | NIE Xiu-Qing, WANG Dong, ZHOU Guo-Ying, XIONG Feng, DU Yan-Gong. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region [J]. Chin J Plant Ecol, 2021, 45(9): 996-1005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn