Chin J Plant Ecol ›› 2009, Vol. 33 ›› Issue (5): 1003-1012.DOI: 10.3773/j.issn.1005-264x.2009.05.020
• Research Communications • Previous Articles Next Articles
WANG Kai1,2, ZHU Jiao-Jun1,*(), YU Li-Zhong1, SUN Yi-Rong1, CHEN Guang-Hua3
Received:
2009-02-16
Revised:
2009-06-02
Online:
2009-02-16
Published:
2009-09-30
Contact:
ZHU Jiao-Jun
WANG Kai, ZHU Jiao-Jun, YU Li-Zhong, SUN Yi-Rong, CHEN Guang-Hua. EFFECTS OF SHADING ON THE PHOTOSYNTHETIC CHARACTERISTICS AND LIGHT USE EFFICIENCY OF PHELLODENDRON AMURENSE SEEDLINGS[J]. Chin J Plant Ecol, 2009, 33(5): 1003-1012.
Fig. 2 Responses of net photosynthetic rate to photosynthetic photon flux density in Phellodendron amurense seedlings under natural light and shade in spring, summer and autumn
春季 Spring | 夏季 Summer | 秋季 Autumn | ||||||
---|---|---|---|---|---|---|---|---|
自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | |||
最大光合速率 Maximum net photosynthetic rate (Pmax) (μmol·m-2·s-1) | 18.52±1.57a | 14.81±0.65a | 17.39±0.37a | 13.89±1.13a | 18.46±1.71a | 17.61±1.36a | ||
表观量子效率 Apparent quantum yield (AQY) (mol·mol-1) | 0.079±0.007a | 0.060±0.003a | 0.074±0.009a | 0.077±0.008a | 0.048±0.007a | 0.074±0.004a | ||
暗呼吸速率 Dark respiration rate (Rd) (μmol·m-2·s-1) | 1.601±0.006a | 1.400±0.092a | 3.194±0.134a | 2.423±0.292a | 1.614±0.310a | 0.944±0.123a | ||
光补偿点 Light compensation point (LCP) (μmol·m-2·s-1) | 30.49±0.32a | 25.58±0.67b | 70.69±3.55a | 42.45±2.89b | 32.31±2.88a | 15.08±1.99b |
Table 1 Maximum net photosynthetic rate (Pmax), apparent quantum yield (AQY), dark respiration rate (Rd) and light compensation point (LCP) in leaves of Phellodendron amurense seedlings under natural light and shade treatments in spring, summer and autumn (mean±SE, n=3, p<0.05)
春季 Spring | 夏季 Summer | 秋季 Autumn | ||||||
---|---|---|---|---|---|---|---|---|
自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | |||
最大光合速率 Maximum net photosynthetic rate (Pmax) (μmol·m-2·s-1) | 18.52±1.57a | 14.81±0.65a | 17.39±0.37a | 13.89±1.13a | 18.46±1.71a | 17.61±1.36a | ||
表观量子效率 Apparent quantum yield (AQY) (mol·mol-1) | 0.079±0.007a | 0.060±0.003a | 0.074±0.009a | 0.077±0.008a | 0.048±0.007a | 0.074±0.004a | ||
暗呼吸速率 Dark respiration rate (Rd) (μmol·m-2·s-1) | 1.601±0.006a | 1.400±0.092a | 3.194±0.134a | 2.423±0.292a | 1.614±0.310a | 0.944±0.123a | ||
光补偿点 Light compensation point (LCP) (μmol·m-2·s-1) | 30.49±0.32a | 25.58±0.67b | 70.69±3.55a | 42.45±2.89b | 32.31±2.88a | 15.08±1.99b |
Fig. 3 Light responses of light use efficiency in Phellodendron amurense seedlings under natural light and shade treatments in spring, summer and autumn
春季 Spring | 夏季 Summer | 秋季 Autumn | ||||||
---|---|---|---|---|---|---|---|---|
自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | |||
单位干重叶绿素含量 Chlorophyll content per mass (Chlmass) (mg·g-1) | 5.60±0.10a | 17.72±0.38b | 7.33±0.17a | 13.28±0.12b | 5.73±0.09a | 14.0±0.16b | ||
单位面积叶绿素含量 Chlorophyll content per area (Chlarea) (g·m-2) | 0.2627±0.0045a | 0.4142±0.0088a | 0.4323±0.0099a | 0.4186±0.0039a | 0.3457±0.0056a | 0.4469±0.0051a | ||
叶绿素a/b值 Chlorophyll a/b (Chl a/b) | 3.40±0.13a | 2.35±0.04b | 6.82±0.07a | 4.08±0.14b | 5.82±0.14a | 4.19±0.03b | ||
类胡萝卜素含量 Carotenoid content (Car) (g?m-2) | 0.0523±0.0011a | 0.0454±0.0010b | 0.1176±0.0039a | 0.0765±0.0011b | 0.0911±0.0026a | 0.0799±0.0010a | ||
类胡萝卜素/叶绿素比值 Chlorophyll/Carotenoid (Car/Chl) | 0.1989±0.0012a | 0.1098±0.0039b | 0.2720±0.035a | 0.1827±0.0010b | 0.2635±0.0033a | 0.1787±0.0005b |
Table 2 Chlorophyll (Chl) and carotenoid (Car) contents of Phellodendron amurense seedlings under natural light and shade in spring, summer and autumn (mean±SE, n=3, p<0.05)
春季 Spring | 夏季 Summer | 秋季 Autumn | ||||||
---|---|---|---|---|---|---|---|---|
自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | 自然光 Natural light | 遮阴 Shade | |||
单位干重叶绿素含量 Chlorophyll content per mass (Chlmass) (mg·g-1) | 5.60±0.10a | 17.72±0.38b | 7.33±0.17a | 13.28±0.12b | 5.73±0.09a | 14.0±0.16b | ||
单位面积叶绿素含量 Chlorophyll content per area (Chlarea) (g·m-2) | 0.2627±0.0045a | 0.4142±0.0088a | 0.4323±0.0099a | 0.4186±0.0039a | 0.3457±0.0056a | 0.4469±0.0051a | ||
叶绿素a/b值 Chlorophyll a/b (Chl a/b) | 3.40±0.13a | 2.35±0.04b | 6.82±0.07a | 4.08±0.14b | 5.82±0.14a | 4.19±0.03b | ||
类胡萝卜素含量 Carotenoid content (Car) (g?m-2) | 0.0523±0.0011a | 0.0454±0.0010b | 0.1176±0.0039a | 0.0765±0.0011b | 0.0911±0.0026a | 0.0799±0.0010a | ||
类胡萝卜素/叶绿素比值 Chlorophyll/Carotenoid (Car/Chl) | 0.1989±0.0012a | 0.1098±0.0039b | 0.2720±0.035a | 0.1827±0.0010b | 0.2635±0.0033a | 0.1787±0.0005b |
[1] | An F (安锋), Lin WF (林位夫) (2005). Significances of plant shade-tolerance study and its advances. Chinese Journal of Tropical Agriculture (热带农业科学), 25(2), 68-72. (in Chinese with English abstract) |
[2] | Bai YL (白由路), Yang LP (杨俐苹) (2004). An approach to measure plant leaf area using image process. Agriculture Network Information (农业网络信息), (1), 36-38. (in Chinese with English abstract) |
[3] |
Bloor JMG (2003). Light responses of shade-tolerant tropical tree species in North-East Queensland: a comparison of forest- and shadehouse-grown seedlings. Journal of Tropical Ecology, 19, 163-170.
DOI URL |
[4] | Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P, Scholes JD (1999). Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proceedings of the National Academy of Sciences of the United States of America, 96, 1135-1139. |
[5] |
Cao KF (2000). Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Canadian Journal of Botany, 78, 1245-1253.
DOI URL |
[6] | Chinese Virtual Herbarium (中国数字植物标本馆) (2009). http://www.cvh.org.cn/baohu/List.asp.Cited 21 Dec.2008. |
[7] |
Demmig AB, Adams WW (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 599-626.
DOI URL |
[8] | Escalona JM, Flexas J, Medrano H (1999). Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Australian Journal of Plant Physiology, 26, 421-433. |
[9] |
Evans JR, Poorter H (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf aera and nitorgen partitioning in maximizing carbon gain. Plant, Cell and Environment, 24, 755-767.
DOI URL |
[10] |
Falster DS, Westoby M (2003). Leaf size and angle vary widely acorss species: what consequences for light interception? New Phytologist, 158, 509-525.
DOI URL |
[11] | Farquhar GD, Caemmerer SV (1982). Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant Ecology II: Encyclopedia of Plant Physiology. Springer, Berlin. |
[12] |
Glaeser CW, Kincaid D (2005). The non-native invasive Phellodendron amurense Rupr in a New York City woodland. Arboricultural Journal, 28, 151-164.
DOI URL |
[13] | Guo LW (郭连旺), Shen YG (沈允钢) (1996). Protective mechanisms against photodamage in photosynthetic apparatus of higher plants. Plant Physiology Communications (植物生理学通讯), 32(1), 1-8. (in Chinese with English abstract) |
[14] | Guo YH (郭玉华), Cai ZQ (蔡志全), Cao KF (曹坤芳), Wang WL (王渭玲) (2004). Leaf photosynthetic and anatomic acclimation of four tropical rainforest tree species to different growth light conditions. Journal of Wuhan Botanical Research (武汉植物学研究), 22, 240-244. (in Chinese with English abstract) |
[15] | Ishizuka M, Sugawara S (1989). Composition and structure of natural mixed forests in Central Hokkaido.Ⅱ. Effects of disturbance on the forest vegetation patterns along a topographic moisture gradient. Journal of the Japanese Forestry Society, 71, 89-98. |
[16] | Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2000). Susceptibility to photoinhibition of three deciduous broadleaf tree species with diferent successional traits raised under various light regimes. Plant, Cell and Environment, 23, 81-89. |
[17] | Lambers H, Poorter H (1992). Inherent variation in growth-rate between higher plants―A search for physiological causes and ecological consequences. In: Begon M, Fitter AH eds. Advances in Ecological Research. Academic Press, London, 187-261. |
[18] | Li HS (李合生) (2000). The Experiment Principle and Technique for Plant Physiology and Biochemistry(植物生理生化实验原理和技术). Higher Education Press, Beijing, 134-138. (in Chinese) |
[19] |
McKiernan M, Baker NR (1992). A method for the rapid monitoring of photosynthetic shade adaptation in leaves. Functional Ecology, 6, 405-410.
DOI URL |
[20] | Niinemets U, Tenhunen JD (1997). A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell and Environment, 20, 845-866. |
[21] | Pearcy RW, Sims DA (1994). Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. In: Caldwell MM, Pearcy RW eds. Exploitation of Environmental Heterogeneity by Plant: Ecophysiological Processes Above- and Below-ground. Academic Press, San Diego, 145-174. |
[22] | Penuelas J, Filella I, Llusia J, Siscart D, Pinol J (1998). Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia. Journal of Experimental Botany, 49, 229-238. |
[23] |
Poorter L, Oberbauer SF, Clark DB (1995). Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. American Journal of Botany, 82, 1257-1263.
DOI URL |
[24] | Qi X (齐欣), Cao KF (曹坤芳), Feng YL (冯玉龙) (2004). Photosynthetic acclimation to different growth light environments in seedlings of three tropical rainforest Syzygium species. Acta Phytoecologica Sinica (植物生态学报), 28, 31-38. (in Chinese with English abstract) |
[25] | Rehder A (1940). Manual of Cultivated Trees and Shrubs Hardy in North America Exclusive of the Subtropical and Warm Regions. Blackburn Press, Caldwell, NJ, USA. |
[26] |
Reich PB, Walters MB (1994). Photosynthesis-nitrogen relations in Amazonian tree pecies. 2. Variation in nitrogen vis-a-vis specific leaf-area influences mass-based and area-based expressions. Oecologia, 97, 73-81.
DOI URL PMID |
[27] |
Reich PB, Walters MB, Tjoelker MG, Vanderklein DW, Buschena C (1998). Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 12, 395-405.
DOI URL |
[28] |
Sakai T, Tanaka H, Shibata M, Suzuki W, Nomiya H, Kanazashi T, Iida S, Nakashizuka T (1999). Riparian disturbance and community structure of a Quercus-Ulmus forest in central Japan. Plant Ecology, 140, 99-109.
DOI URL |
[29] |
Walters MB, Reich PB (1996). Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology, 77, 841-853.
DOI URL |
[30] | Wang Y (王雁), Su XH (苏雪痕), Peng ZH (彭镇华) (2002). Review of studies on plant shade-tolerance. Forest Research (林业科学研究), 15, 349-355. (in Chinese with English abstract) |
[31] | Xia JB (夏江宝), Zhang GC (张光灿), Liu JT (刘京涛), Liu Q (刘庆), Chen J (陈建) (2008). Responses of photosynthetic and physiological parameters in Campsis radicans to soil moisture and light intensities. Journal of Beijing Forestry University (北京林业大学学报), 30(5), 13-18. (in Chinese with English abstract) |
[32] | Xu DQ (许大全) (2002). The Efficiency of the Photosynthesis(光合作用效率). Shanghai Science and Technology Press, Shanghai, 13-114. (in Chinese) |
[33] |
Yoshida T, Kamitani T (1999). Growth of a shade-intolerant tree species,Phellodendron amurense, as a component of a mixed-species coppice forest of central Japan. Forest Ecology and Management, 113, 57-65.
DOI URL |
[34] |
Zhang WF (张旺锋), Fan DY (樊大勇), Xie ZQ (谢宗强), Jiang XH (蒋晓晖) (2005). The seasonal photosynthetic responses of seedlings of the endangered plant Cathaya argyrophylla to different growth light environments. Biodiversity Science (生物多样性), 13, 387-397. (in Chinese with English abstract)
DOI URL |
[35] | Zhao HX (赵惠勋), Chai YX (柴一新), Zhang DL (张东力) (1991). Photosynthesis determination on some tree species and the forest management suggestions. Journal of Northeast Forestry University (东北林业大学学报), 19, 284-289. (in Chinese with English abstract) |
[36] | Zhou XF (周晓峰), Li JQ (李俊清) (1991). A study on the secondary Amur Cork tree forest. Journal of Northeast Forestry University (东北林业大学学报), 19, 140-146. (in Chinese with English abstract) |
[37] |
Zhu JJ (朱教君) (2002). A review on fundamental studies of secondary forest management. Chinese Journal of Applied Ecology (应用生态学报), 13, 1689-1694. (in Chinese with English abstract)
URL PMID |
[38] |
Zhu JJ, Matsuzaki T, Lee FQ, Gonda Y (2003). Effect of gap size created by thinning on seeding emergency, survival and establishment in a coastal pine forest. Forest Ecology and Management, 182, 339-354.
DOI URL |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[3] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[4] | LIU Hai-Yan, ZANG Sha-Sha, ZHANG Chun-Xia, ZUO Jin-Cheng, RUAN Zuo-Xi, WU Hong-Yan. Photochemical reaction of photosystem II in diatoms under phosphorus starvation and its response to high light intensity [J]. Chin J Plant Ecol, 2023, 47(12): 1718-1727. |
[5] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[6] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
[7] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[8] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[9] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[10] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[11] | WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity [J]. Chin J Plant Ecol, 2021, 45(4): 404-419. |
[12] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[13] | HU Zong-Da, LIU Shi-Rong, LUO Ming-Xia, HU Jing, LIU Xing-Liang, LI Ya-Fei, YU Hao, OU Ding-Hua. Characteristics of soil carbon and nitrogen contents and enzyme activities in sub-alpine secondary forests with different successional stages in Western Sichuan, China [J]. Chin J Plant Ecol, 2020, 44(9): 973-985. |
[14] | LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves [J]. Chin J Plant Ecol, 2020, 44(8): 854-863. |
[15] | LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming [J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn